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Abstract

Background: Although nephrotoxic agents or nephrotoxins are 
known to induce acute renal cell injury, their cytotoxic action is not 
fully elucidated. It is thus crucial to explore such a cytotoxic mech-
anism and the increasing volume of reports indicated a significant 
involvement of oxidative stress. To test this possibility, we investi-
gated if a nephrotoxin would exert oxidative stress, leading to renal 
cell injury accompanied by certain biochemical alterations. We also 
examined if specific antioxidant might help prevent such oxidative 
cell injury. These studies may then help establish a prophylactic or 
preventive modality for renal cell injury induced by nephrotoxins.

Methods: As glycerol has been commonly used for studying acute 
renal failure in animals, whether it would induce cellular injury was 
tested in renal proximal tubular OK cells in vitro. Cells were ex-
posed to the varying concentrations of glycerol and cell number/vi-
ability was determined in 24 hours. Severity of oxidative stress was 
assessed by lipid peroxidation assay. Possible effects of glycerol on 
biochemical parameters were also examined on glyoxalase I activ-
ity and heat shock protein 90 using spectrophotometric (enzymatic) 
assay and Western blot analysis.

Results: Glycerol (2.5%) was highly cytotoxic to OK cells, induc-
ing 95% cell death in 24 hours. Lipid peroxidation assay indicated 
that nearly 3-fold greater oxidative stress was exerted by this glyc-

erol. Concurrently, glyoxalase I activity was drastically lost by 75% 
and heat shock protein 90 was partially degraded following glyc-
erol exposure. However, N-acetylcysteine, a potent glutathione-
based antioxidant, was capable of almost completely preventing the 
glycerol-mediated adverse outcomes, such as cell death, glyoxalase 
I inactivation, and heat shock protein 90 degradation.

Conclusions: Glycerol is cytotoxic, capable of inducing specific 
biochemical alterations such as inactivation of glyoxalase I and 
degradation of heat shock protein 90, which may reflect a break-
down of the cellular detoxification and defense systems, leading 
ultimately to OK cell death. Nevertheless, as N-acetylcysteine can 
provide full cytoprotection against such glycerol toxicity, it could 
be considered a prophylactic modality for nephrotoxin-induced 
oxidative renal cell injury and death.
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Introduction

Various nephrotoxic agents, such as HgCl2, glycerol, cispla-
tin, gentamicin etc., have been known to exert cytotoxic ef-
fects on renal tubular cells [1, 2], inducing acute renal cell 
injury. However, as their cytotoxic action yet remains elu-
sive, the preventive or therapeutic modalities for renal cell 
injury have not been established. Nevertheless, the accumu-
lating data suggest that the involvement of oxidative stress 
(generation of oxygen free radicals) could be crucial for such 
renal cell injury induced by nephrotoxins [3, 4]. In addition, 
we have recently reported that oxidative stress would play 
a primary role in renal cell injury with certain nephrotoxins 
[5]. We were thus encouraged to further expand our study 
of nephrotoxin-mediated oxidative stress, focusing on bio-
chemical parameters in the different renal cell line.

One of such biochemical parameters is glyoxalase I 
(Gly-I), a vital enzyme involved in the cellular detoxifica-
tion process [6], playing a critical role in detoxifying and 
scavenging cytotoxic agents and metabolites (including free 
radicals) [7, 8]. Since activation of Gly-I inevitably requires 
reduced glutathione (GSH) as a cofactor [7], it is also cat-
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egorized in a family of GSH-dependent enzymes. It is then 
plausible that Gly-I could be somewhat involved in detoxifi-
cation of nephrotoxins. 

A family of heat shock proteins (Hsps) is another inter-
esting biochemical parameter, consisting of several species 
[9]. As they are functionally known as stress-response pro-
teins, immediately responding to a variety of stresses exerted 
on the cells, they have been considered to play an important 
role in the cellular defense mechanism [10]. Among those 
Hsps, we are particularly interested in heat shock protein 90 
(Hsp90) because it is primarily localized in the distal tubules 
and collecting ducts in the kidney [11] and would serve to 

protect renal cells from stress-related assaults [12]. It is thus 
possible that Hsp90 may also help protect renal cells from 
certain nephrotoxins.

We proposed that nephrotoxins would exert oxidative 
stress on renal cells as their primary cytotoxic action, trig-
gering a cascade of biochemical events and leading ultimate-
ly to cell death. Accordingly, glycerol (GLC), a nephrotoxin 
capable of inducing renal cell injury, was chosen for study-
ing its cytotoxic action on renal proximal tubular OK cells 
[13] in vitro (instead of LLC-PK1 cells used in our previ-
ous study). We first examined if GLC would actually exert 
oxidative stress on OK cells, and possible effects of GLC 

Table 1. Effects of GLC on LPO Levels Measured by MDA Formed

Figure 1.  Dose-dependent effects of glycerol (GLC) on OK cell growth.  Cells were cultured with varying 
concentrations (0, 0.5, 1, 1.5, 2, 2.5, or 3%) of GLC for 24 hours, and cell numbers were determined as 
mean ± SD (standard deviation) from three separate experiments (*P < 0.03).

∆ Mean ± SD (standard deviation) of three separate experiments. * Values in parentheses are 
arbitrary numbers relative to control’s (1 = 0.87 μM).

Conditions MDA Formed (μM)∆ at 3 Hours

Control 0.87 ± 0.09 (1)*

+ GLC (2.5%) 2.71 ± 0.22 (3.1)*
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(through oxidative stress) were then examined on two bio-
chemical parameters, Gly-I and Hsp90.  We also explored 
if certain antioxidants (e.g. vitamins C/E and GSH) might 
provide cytoprotection against GLC-mediated oxidative as-
sault. Detailed studies and notable findings are described and 
discussed herein.

Materials and Methods

Cell culture

The renal proximal tubular OK cells [13] were maintained 
in RPMI-1640 medium supplemented with 10% fetal bovine 
serum, penicillin (100 units/ml), and streptomycin (100 μg/
ml). For experiments, OK cells were seeded at 2 × 105 cells/
ml in 6-well plates or T-75 flasks and cultured with varying 
concentrations of glycerol (GLC). Cell number/viability was 
determined at specified times by the trypan blue exclusion 
method.

Lipid peroxidation (LPO) assay

Severity of oxidative stress on the cells was assessed by LPO 
assay measuring the amount of malondialdehyde (MDA) 

formed, which was indicative of oxidative damage in the 
plasma membrane [14]. The detailed procedures were de-
scribed in the vendor’s protocol (Calbiochem, La Jolla, CA), 
and the amount of MDA formed was expressed by μM deter-
mined from the MDA standards.

Glyoxalase I (Gly-I) assay

Gly-I activity was measured following the method of Ranga-
nathan and Tew [15]. After preparation of the reaction mix-
ture (200 mM imidazole HCl, pH 7.0, 16 mM MgSO4, 7.9 
mM methylglyoxal, 1 mM GSH), the reaction was started by 
the addition of cell lysates (40 μg). Due to a production of S-
D-lactoylglutathione (E240 = 3.37 mM-1. cm-1), the increase in 
absorbance at 240 nm was measured with times on a spectro-
photometer. Gly-I activity was then expressed by units/mg 
protein where one unit was defined to catalyze the formation 
of one μmol of S-D-lactoylglutathione per min.

Western blot analysis

The procedures essentially followed the protocol described 
previously [16]. Briefly, an equal amount of cell lysates (7 
μg) obtained from control and agent-treated cells was sub-
jected to 10% SDS-polyacrylamide gel electrophoresis and 

Figure 2. Protective effects of antioxidants on cell viability. Cells were treated with GLC (2.5%) alone or in 
combination with VC (200 μM), Trx (300 μM), or NAC (500 μM) and cell viability was assessed in 24 hours. 
All data are mean ± SD from three separate experiments (*P < 0.01 compared to controls).
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transferred to a nitrocellulose membrane. The blot (mem-
brane) was incubated with the primary antibody against 
Hsp90 (anti-Hsp90), followed by an incubation with the 
secondary antibody conjugate. The immunoreactive protein 
bands were then detected by chemiluminescence following 
the manufacturer’s protocol (Kirkegaard and Perry Labora-
tories, Gaithersberg, MD).

Statistical analysis

All data were presented as mean ± SD (standard deviation), 
and statistical differences between groups were assessed 

with either one-way analysis of variance (ANOVA) or the 
unpaired Student’s t test. Values of P < 0.05 were considered 
to indicate statistical significance.

 
Results

Effects of glycerol (GLC) on OK cell proliferation  

OK cells were cultured with varying concentrations (0-3%) 
of GLC and cell growth/viability was determined in 24 
hours. GLC was capable of inducing 38%, 60%, 79%, 95%, 

Figure 3. A: Time-dependent effects of GLC on Gly-I activity. OK cells were exposed to GLC (2.5%) for 1, 3, or 6 hours, 
and Gly-I activity was measured and expressed by μmol/mg, as described in Materials and Methods.  All data are mean 
± SD from three separate experiments (*P < 0.03). B: Effects of NAC on GLC-induced Gly-I inactivation.  Cells were 
exposed to GLC (2.5%), NAC (500 μM), or GLC/NAC combination for 6 hours, and Gly-I activity was determined and 
expressed by the % relative to control’s (100% Gly-I activity = 0.71 μmol/mg). The data are mean ± SD from three inde-
pendent experiments (*P < 0.05 compared to controls).
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and 100% growth reduction with 1%, 1.5%, 2%, 2.5%, and 
3% GLC, respectively (Fig. 1). Although no apparent cell 
death was observed up to 2% GLC, a 95% growth reduction 
attained with 2.5% GLC was largely attributed to severe cell 
death. We then used this 2.5% GLC as the most effective 
concentration in the rest of our study. 

Oxidative stress exerted by GLC

To understand how GLC could induce such severe cell death, 
the possible involvement of oxidative stress was next exam-
ined as it had been previously addressed [3, 4]. LPO assay 
was performed to assess severity of oxidative stress as de-
scribed in Materials and Methods.  The MDA level in the 
cells exposed to GLC for 3 hours was ~3-fold greater than 
that in controls, indicating severe plasma membrane damage 
through oxidative stress (Table 1).  Thus, GLC appears to 
markedly exert oxidative stress on the cells, eventually lead-
ing to renal cell death.

Cytoprotection provided with N-acetylcysteine against 
GLC 

As antioxidants are known to be effective against oxidative 
stress, we examined if certain antioxidants such as vitamin C 
(VC), trolox (Trx; a cell-permeable, water-soluble derivative 
of vitamin E) [17], or N-acetylcysteine (NAC; a cell-perme-
able precursor for GSH) [18] could protect OK cells from 
GLC-mediated oxidative stress. GLC (2.5%)  alone induced 
~95% cell death in 24 hours but NAC (500 μM) prevented 
such severe cell death, maintaining cell viability at nearly 
100% (Fig. 2). No such protective effects were yet seen with 
VC (200 μM) or Trx (300 μM). Thus, NAC is capable of 
providing cytoprotection against GLC oxidative assault. 

Possible role of glyoxalase I (Gly-I) in NAC-provided cy-
toprotection 

The finding that only NAC was effective against oxidative 
assault led us to assume that NAC might not only scavenge 
free radicals but also act as some biochemical factor. In fact, 

NAC is known as an essential co-factor required for acti-
vation of glyoxalase I (Gly-I), which plays a major role in 
cellular detoxification [6]. The possible involvement of Gly-
I in NAC cytoprotection was then examined.  Such study 
showed that Gly-I activity was significantly lost by 35% and 
75% with 3- and 6-hour GLC exposure, respectively (Fig. 
3A). In contrast, NAC (500 μM) was capable of not only en-
hancing basal Gly-I activity (~50% greater than controls) but 
also completely preventing Gly-I inactivation with 6-hour 
GLC exposure (Fig. 3B). With such a direct impact of NAC 
on Gly-I, it is plausible that NAC-provided cytoprotection 
could be in part attributed to Gly-I mediated detoxification 
of GLC. 

Effects of GLC on heat shock protein 90 (Hsp90)

We were also interested in another biochemical parameter 
known as Hsp90, because it has been shown to play a protec-
tive role against various types of cytotoxic insults [10]. OK 
cells exposed to GLC (2.5%) for 1 or 3 hours were analyzed 
for the status of Hsp90 on Western blots. Partial degradation 
of Hsp90 was detected at 1 hour and became clearly evident 
at 3 hours (Fig. 4), exhibiting a lower degraded protein band 
(~85 kDa). This finding further indicates a possible break-
down of the cellular defense system (by GLC), which could 
feasibly lead to cell injury and even cell death.

Discussion
  
As our previous study [5] suggested a primary role of oxi-
dative stress in renal cell injury induced by nephrotoxins, 
we further investigated possible alterations in specific bio-
chemical events induced by a nephrotoxin, glycerol (GLC), 
in renal tubular OK cells in vitro. GLC (2.5%) demonstrated 
to be highly cytotoxic, inducing severe cell death (95%) in 
24 hours. Such cytotoxicity appeared to be primarily due to 
oxidative stress through GLC, indicated by LPO assay (Ta-
ble 1). It is thus conceivable that such oxidative stress may 
trigger a cascade of various biochemical events, leading ul-
timately to cell death.  

Figure 4. Effect of GLC on Hsp90. Cells exposed to GLC (2.5%) for indicated 
times were analyzed for expression of Hsp90 on Western blots. The degraded 
product (~85 kDa) of Hsp90 is indicated by an arrow, and β-actin is used as a 
protein loading control.
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We next examined if certain antioxidant(s) might coun-
teract with GLC-mediated oxidative stress. Interestingly, 
only NAC was found to protect OK cells from GLC oxida-
tive assault (Fig. 2), implying the possible involvement of 
specific NAC-activated enzyme such as glyoxalase I (Gly-I) 
[6]. Our study then showed that a 75% loss in Gly-I activ-
ity after 6-hour GLC exposure (Fig. 3A) was completely re-
versed or prevented with NAC (Fig. 3B) and cell viability 
also remained at nearly 100% (Fig. 2). Thus, these results 
suggest that Gly-I may somewhat detoxify/diminish GLC 
cytotoxicity, contributing to NAC-provided cytoprotection.

It is crucial but remains uncertain how GLC would inac-
tivate Gly-I. Yet, we assume that GLC-induced Gly-I inac-
tivation may likely result from an insufficient availability of 
cellular GSH (synthesized in renal cells) because activation 
of Gly-I essentially requires GSH (or NAC used in this study) 
[7]. It is possible that GLC by itself or GLC-mediated oxi-
dative stress may interfere with de novo synthesis of GSH, 
depriving cellular GSH. For example, γ-glutamylcysteine 
synthetase [18], a key enzyme involved in GSH synthesis, 
or other enzymes could be primarily targeted by GLC or free 
radicals.  Further studies are thus required.

Another interesting biochemical alteration through 
GLC was partial degradation of Hsp90 (Fig. 4). As Hsp90 is 
shown to play a defensive role, its degradation could result 
in a weakening or destabilization of the cellular defense sys-
tem, ultimately leading to renal cell death. It is yet of interest 
to further explore how Hsp90 would be degraded by GLC. 
As protein degradation is generally known to be carried out 
by protease(s), we assume that proteasome, a multicatalytic 
protease, might be involved in Hsp90 degradation because it 
has been shown to play a major role in degradation of intra-
cellular proteins including Hsps [19]. Such study is currently 
underway in our laboratory.

In summary, the cytotoxic action of GLC primarily in-
volves oxidative stress, causing adverse biochemical altera-
tions such as inactivation of Gly-I and partial degradation of 
Hsp90. This indicates a collapse of the cellular detoxification 
and defense systems, presumably leading to renal cell death. 
However, NAC-provided cytoprotection against GLC, re-
storing Gly-I activity and protecting Hsp90 integrity, may 
have clinical implications in preventing renal cell injury/
death induced by nephrotoxins.
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