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Abstract

Assessing the volume status in critically ill patients is the key to main-
tain the stability of the hemodynamics; however, it can be challenging 
to view the complexity of cases and the diversity of shock etiology. 
Multiple noninvasive means have been used to study the effectiveness 
of volume resuscitation, but none of them have been used as gold 
standard. We aim to illustrate the most used techniques: left ventricu-
lar outflow tract velocity time integral versus inferior vena cava com-
pressibility index, and highlight their limitations and strengths. These 
tools are both operator-dependent and might be affected by several 
factors including ventilator settings.
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Introduction

Establishing hemodynamic stability in critically ill patients 
optimizes their clinical outcome. Intravenous fluid therapy is 
a common treatment modality in critical care medicine and is 
essential in maintaining hemodynamic stability [1]. However, 
in the critical care setting, the etiology of hemodynamic in-
stability is often multifactorial. Critically ill patients require 
accurate monitoring and estimation as to when fluid therapy 
is warranted. This is often difficult as clinical parameters such 
as blood pressure, urine output and heart rate may not detect 
early signs of hypovolemia [2]. Furthermore, fluid therapy 
in a patient that is not fluid responsive has shown to increase 

morbidity and mortality [3]. Fluid responsiveness is classically 
defined as an increase in stroke volume (SV) by greater than 
10% after rapid volume infusion as well as a change in cardiac 
output (CO) [4, 5].

Body

Standard of care in determining fluid responsiveness in 
patients

Traditionally, central venous pressure (CVP) monitoring and 
mean arterial pressure (MAP) were used to assess when inva-
sive fluid therapy was indicated in critically ill patients. How-
ever, multiple studies have shown that they are not accurate 
in predicting fluid responsiveness among these patients [6]. 
Marik et al conducted a meta-analysis which enforced that CVP 
should not be used to guide fluid therapy. Methods like pulse-
pressure change by radial arterial line, fluid challenge, left 
ventricular outflow tract (LVOT) velocity time integral (VTI) 
on echocardiogram, carotid doppler flow on transesophageal 
echocardiogram (TEE), inferior vena cava (IVC) collapsibil-
ity index (IVCCI) have been proposed as alternate modes of 
determining fluid management [7]. Additionally, a prospective 
observational study suggested that the right subclavian vein 
variation during a respiratory cycle matches up with IVCCI 
and can be used to speculate fluid responsiveness [8].

Noninvasive cardiac imaging and most common techniques

Several techniques for assessing fluid responsiveness and CO 
have been validated. Although it is beyond the scope of this 
paper, we would like to list some of these described tools.

CVP or right atrial pressure is used to be considered one 
of the parameters that we used to judge whether fluids should 
be administered or not. A large number of studies have shown 
that the positive predictive value of CVP for fluid respon-
siveness is low [9]. Similar findings were reported in regards 
of using pulmonary artery occlusion pressure (PAOP) as an 
accurate predictor of preload even in healthy subjects. Like 
CVP, PAOP should not be used to decide on fluid adminis-
tration [9]. Passive leg raise (PLR) has been used as a trial 
of reversible fluid challenge. It is applicable in spontaneous 
breathing, low tidal volumes (TVs), and is not affected by 
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irregular cardiac rhythms. The test starts in semi recumbent 
position, then the head is lowered, and the legs are raised. The 
effect is expected in 1 to 5 min. Several studies, even in ven-
tilated patients, have shown that PLR successfully predicts a 
response to volume administration. However, this technique 
might be limited in increased intra-abdominal pressure, mus-
culoskeletal problems and may require a special hospital bed 
[10]. Pulse pressure variation (PPV) is also another famous 
technique, reported in one of the most influential studies to be 
effective in predicting fluid responsiveness. However, its use 
is limited in ventilated patients with TV < 8 mL/kg, irregular 
rhythm, right ventricular dysfunction or those who are spon-
taneously breathing [11].

Echocardiography has become the most common method 
of estimating fluid responsiveness in the intensive care unit 
by monitoring CO [12]. The LVOT VTI has been the most 
studied technique [13]. McGregor et al conducted a study 
with LVOT VTI as the standard and compared the technique 
to other methods of noninvasive CO monitoring which in-
clude common carotid artery blood flow monitoring and 
plethysmography using the vascular unloading technique. 
Although IVCCI does not estimate CO, this method was also 
included in the analysis [13]. This analysis showed variabil-
ity in the ability of noninvasive cardiac imaging evaluating 
SV and CO when compared with LVOT VTI in estimating 
fluid responsiveness [13].

LVOT effectiveness

Left ventricular systolic function is monitored using LVOT. 
An increase in LVOT VTI can be extrapolated to an increase 
in SV which subsequently means an increase in CO [14]. Us-
ing the echocardiogram, the VTI is measured before and after 
fluid challenge or a PLR which is equivalent to 250 - 500 mL 
fluid bolus. A greater than 10% change in VTI after the fluid 
challenge is an indicator of fluid responsiveness. Wang et al 
looked at the effect of LVOT VTI variation rate in assessing 
fluid responsiveness in ventilated patients with septic shock. 
They utilized the variation in hemodynamic parameters like 
SV, cardiac index, and pulse pressure after volume expansion 
test, comparing it to the LVOT VTI variation. They found that 
there was a positive relation between the change in these pa-
rameters and the LVOT VTI after the volume expansion test. 
LVOT VTI was found to have extremely high sensitivity and 
specificity in predicting fluid responsiveness. However, this 
study only included sedated and ventilated septic patients [3].

Similarly, Asta et al performed a study looking at LVOT 
VTI in spontaneous breathing patients after major abdominal 
surgery and found that LVOT VTI variation of more than 10% 
during the respiratory cycle correlated with fluid responsive-
ness. There are limitations when using dynamic parameters 
in spontaneous breathing patients such as TV, variation in 
intrathoracic pressure as well as abdominal wall contraction 
[15]. However, these limitations did not pose any significant 
difference. In this study, the variation in abdominal wall con-
traction was limited as these patients were in the early post-
operative period [15].

Blancas et al did not find a definite association between 

LVOT VTI and SV. They suggest the use of this method in 
correlation with other tools of hemodynamic monitoring [16]. 
Another study that looked at LVOT VTI using TEE, found a 
weak correlation between using LVOT VTI measured by TEE 
and SV index calculated using a pulmonary artery catheteriza-
tion. This study was only done in patients undergoing cardiac 
surgery [17]. Factors that influence the accuracy of LVOT VTI 
are usually in cases with LVOT obstruction [16]. Low preload 
states as well as dynamic obstruction can influence these read-
ings. It is also important to note that it does not consider right 
ventricular dysfunction [3].

IVC diameter

The IVC diameter dilates during inspiration and contracts dur-
ing expiration. The IVC distensibility index takes into account 
the percentage variation of the IVC during the respiratory cycle 
[18]. Orso et al conducted a meta-analysis on the accuracy of 
using variation in IVC diameter as a predictor of fluid respon-
siveness [18]. Multiple studies varied in analyzing the possible 
correlation between the IVC and fluid responsiveness [19, 20]. 
Some studies were able to show that the IVCCI was a strong 
predictor of fluid responsiveness and other studies were not 
[19, 21]. However, these variations were seen across different 
patient populations. There was variation in the accuracy of the 
IVCCI in patients examined in the emergency department and 
the operating rooms versus in the intensive care unit [18].

Orso et al conducted a meta-analysis and found that in 
septic patients the distensibility index was more reliable in pre-
dicting fluid responsiveness as compared to surgical patients 
given the component of increased abdominal pressure affect-
ing the reliability of the IVCCI [18].

Multiple studies looked at the flatness of IVC on com-
puted tomography (CT) scan and compared it to lactate level 
and predictability of shock. Some studies found a relationship 
between flat IVC and indication for massive transfusion [22], 
while others did not show any correlation with IVC flatness 
and fluid responsiveness. However, CT scans are static and ul-
trasound technique is dynamic which allows better assessment 
of the variation [23].

During passive ventilation, the IVC diameter increases 
during inspiration as the pressure in the right atria increases 
and decreases during expiration. In mechanically ventilated 
patients, IVCCI has been shown to be an accurate measure 
of fluid responsiveness [15, 24, 25] and both inspiratory and 
expiratory IVC correlated significantly with CVP [24]. How-
ever, Si et al found that it was an accurate measure of fluid 
responsiveness in ventilated patients when the TV was ≥ 8 mL/
kg and positive end expiratory pressure (PEEP) was ≤ 5 cm 
water (cm H2O). When these parameters were not accounted 
for, they found that the IVCCI was a poor predictor of fluid 
responsiveness [26]. Similarly, He et al demonstrated that IVC 
distensibility index is affected by TV and is most accurate at 
TV of 9 mL/kg [27]. On the other hand, an observational study 
on 79 critically ill patients who were on mechanical ventilation 
showed that LVOT VTI variations can be taken into account 
when predicting fluid responsiveness at PEEP level ranging 
between 0 and 10 cm H2O [28].
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Given the variation with spontaneous breathing, there has 
been heterogeneity in the studies involving this patient popu-
lation. In spontaneous breathing patients, the variation in the 
IVCCI greater than 40% has been shown to be a strong indica-
tor for fluid responsiveness [15]. However, a variability of less 
than 40% does not strongly indicate that a patient would not be 
considered fluid responsive and leaves room for clinical assess-
ment [29]. Some studies have shown fluid responsiveness with 
IVC variability of > 27% and even as low as 20% variation. 
In other words, fluid responsiveness should not be excluded in 
cases with small variation in IVC [15].

Limitations

Noninvasive cardiac imaging has limitations in the sense that it 
is mostly dependent on the sonographic skill, and the breathing 
motion can affect the ability to obtain accurate visualization of 
the LVOT VTI as well as the IVC. The use of LVOT VTI is 
limited in patients with aortic regurgitation, dilated left ventri-
cle, and atrial fibrillation. Thus, the use of noninvasive cardiac 
imaging and the interpretation of the results in patients with 
structural heart disease should be done cautiously.

Another limitation of the LVOT VTI would be chest wall 
abnormalities which is commonly seen in our practice. Con-
cave shaped chest wall, or anterior chest wall deformity such 
as pectus excavatum can affect echocardiographic measure-
ments such as SV. Therefore, LVOT VTI should be put in rela-
tion to body surface area and chest wall confirmation [30].

LVOT VTI seems to be less affected by mechanical ven-
tilation parameters (TV and PEEP) as compared to IVCCI 
which seems to be more reliable in cases of structural heart 
disease. IVCCI technique has more limitations when it comes 
to mechanical ventilation, respiratory cycle, and abdominal 
wall surgeries.

Lastly, these methods are of importance in evaluating 
volume status in hypovolemic or septic state. Whereas in car-
diogenic, anaphylactic, mixed or undifferentiated shock, these 
modalities are not effective in estimating volume status.

Conclusion

In this review, we described the effectiveness and limitations 
of LVOT VTI and IVCCI in predicting fluid responsiveness. 
The use LVOT VTI appears to be a superior technique in es-
timating fluid responsiveness especially when it comes to in-
tubated patients as compared to IVCCI which showed more 
variations. In conclusion, the use of the noninvasive cardiac 
imaging techniques in conjunction with other tools of hemody-
namic monitoring and clinical judgment are recommended to 
improve the accuracy of fluid responsiveness estimation.
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