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Beyond Human Limits: Harnessing Artificial Intelligence to
Optimize Immunosuppression in Kidney Transplantation
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Abstract

The field of kidney transplantation is being revolutionized by the inte-
gration of artificial intelligence (Al) and machine learning (ML) tech-
niques. Al equips machines with human-like cognitive abilities, while
ML enables computers to learn from data. Challenges in transplanta-
tion, such as organ allocation and prediction of allograft function or
rejection, can be addressed through Al-powered algorithms. These al-
gorithms can optimize immunosuppression protocols and improve pa-
tient care. This comprehensive literature review provides an overview
of all the recent studies on the utilization of Al and ML techniques in
the optimization of immunosuppression in kidney transplantation. By
developing personalized and data-driven immunosuppression proto-
cols, clinicians can make informed decisions and enhance patient care.
However, there are limitations, such as data quality, small sample sizes,
validation, computational complexity, and interpretability of ML mod-
els. Future research should validate and refine Al models for different
populations and treatment durations. Al and ML have the potential to
revolutionize kidney transplantation by optimizing immunosuppression
and improving outcomes. Al-powered algorithms enable personalized
and data-driven immunosuppression protocols, enhancing patient care
and decision-making. Limitations include data quality, small sample
sizes, validation, computational complexity, and interpretability of ML
models. Further research is needed to validate and enhance Al models
for different populations and longer-term dosing decisions.
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Introduction

In the dynamic field of medicine, artificial intelligence (AI) has
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become a prominent topic of discussion, extending its influence
on various disciplines, including transplantation. By equipping
machines with cognitive abilities, Al has brought about a revolu-
tion in healthcare practices. Al involves the development of com-
puter systems that possess human-like cognitive abilities such as
reasoning, problem-solving, and learning. By creating software
and systems that mimic human intelligence, Al enables machines
to exhibit intelligent behavior. Machine learning (ML), a subset
of Al, focuses on developing algorithms and models that allow
computers to learn from data without explicit programming [1].
ML algorithms are trained on extensive datasets, enabling them to
recognize patterns, make predictions, and continuously enhance
their performance. Three broad categories shape the landscape of
ML algorithms: supervised learning, unsupervised learning, and
reinforcement learning. These categories facilitate the decoding
of relationships between input variables and known outputs, the
discovery of hidden patterns in unlabeled data, and the iterative
refinement of prediction models, respectively.

In the context of solid organ transplantation, numerous
challenges persist throughout the transplant process. Allocating
organs to suitable recipients, considering factors such as patient
demographics, comorbidities, genetics, and graft quality, re-
mains a significant challenge due to the limited supply of donor
organs. Additionally, the growing complexity of transplant can-
didates, including advanced age and associated risk factors, ne-
cessitates personalized treatment strategies that optimize immu-
nosuppressive therapy while mitigating the risks of infections,
malignancies, and medication-induced side effects [2]. The role
of Al on kidney transplant has been extensively reviewed re-
cently, with most of the discussion being on various aspects of
Al in kidney transplantation, such as waitlist prioritization, do-
nor-recipient matching, rejection prediction, and post-transplant
outcomes [1, 3]. This review article aimed to specifically delve
into the optimization of immunosuppression - an essential com-
ponent of successful kidney transplantation.

Achieving the delicate balance between underimmuno-
suppression and overimmunosuppression is crucial in kidney
transplantation, considering the risks of rejection, infections,
and medication-related complications. By integrating Al-
powered algorithms, personalized and data-driven immuno-
suppression protocols can be developed, enabling clinicians to
make informed decisions and improve patient care.

Immunosuppression Optimization by Al

Clinicians face challenges in accurately dosing immunosup-

Articles © The authors | Journal compilation © ] Clin Med Res and Elmer Press Inc™ | www.jocmr.org
This article is distributed under the terms of the Creative Commons Attribution Non-Commercial 4.0 International License, which permits 391
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited


https://crossmark.crossref.org/dialog/?doi=10.14740/jocmr5012&domain=pdf&date_stamp=2023-10-02

Al to Optimize Immunosuppression

J Clin Med Res. 2023;15(8-9):391-398

pressive medications due to multiple drug interactions and nar-
row therapeutic windows. Predicting the response to therapy
can be complicated, impacting graft survival, adverse events,
and length of hospital stay. To address these challenges, re-
searchers have employed ML modeling to improve the accu-
racy of tacrolimus dosing and other immunosuppressive drug
dosing after renal transplant compared to clinicians’ decisions.
ML models provide a more precise approach to dosing immu-
nosuppressive medications, aiding in personalized treatment
for transplant patients.

Methods

We performed a comprehensive systematic review of articles fo-
cusing on the use of Al or ML on immunosuppression manage-
ment in kidney transplantation within the last decade, limiting
our search to English language publications. We conducted our
search across two major electronic databases, PubMed MED-
LINE and EMBASE, up to July 1, 2023. Employing a combi-
nation of relevant key terms and synonyms, including “kidney
transplant”, “artificial intelligence”, “machine learning”, and
“immunosuppression”, and aliases, we meticulously screened
retrieved articles. This process began with the removal of du-
plicates, followed by independent abstract assessments by two
authors. Discrepancies in article selection were resolved through
consensus. Subsequently, selected articles underwent full-text
examination to make the final inclusion decisions. Reference
lists of included studies were also reviewed for relevant arti-
cles. In total, our systematic search identified nine studies meet-
ing our criteria, where ML protocols were employed to adjust
conventional immunosuppressive agents in kidney transplant
patients. These studies are detailed further, categorized by the
specific immunosuppressant under investigation.

Tacrolimus

In a prospective study with 80 kidney transplant patients at the
Oslo University Hospital, Storset et al [4] investigated the use of
computerized dosing of tacrolimus in de novo renal transplant
recipients. They compared the effectiveness of computerized
dosing with conventional dosing by experienced transplant phy-
sicians. The results demonstrated that computerized dose indi-
vidualization significantly increased the proportion of tacrolimus
concentrations within the target range as compared to conven-
tional dosing. The time to achieve target levels was also shorter
in high-risk patients. Additionally, computerized dosing showed
benefits in terms of glucose metabolism and renal function.

One of the earliest studies in this context was probably
by McMichael et al [5], who published a paper that presents
an evaluation of an innovative dosing system aimed at opti-
mizing FK 506 and prednisone, called the “intelligent” dos-
ing system (IDS), which was developed to standardize patient
management and improve patient care. The algorithm utilized
stochastic open loop control theory to optimize drug dosing
and has been shown to accurately predict plasma levels of FK
506. The IDS was designed to be simple and accurate, with an
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easy-to-use interface that required no previous computer ex-
perience. The system used a knowledge base containing facts
and rules to determine the best course of action for dosing. The
paper presented dosing examples and observed versus predict-
ed plasma levels to demonstrate the effectiveness of the IDS.
A prospective validation study demonstrated that the model
achieved a 95% accuracy rate in describing the correlation be-
tween FK 506 dosage and FK 506 plasma level. Furthermore,
the study found no biases in the dosing predictions. Important-
ly, the study also confirmed that the dosing predictions made
by the model were unbiased, indicating that the model was re-
liable in providing accurate estimations. The authors conclude
that the IDS is a simple and accurate automated drug dosing
program that can improve patient outcomes.

Using a dataset from the Vienna General Hospital, Seeling
et al [6] developed a knowledge-based system for guiding tac-
rolimus therapy in kidney transplant patients. The goal of the
study was to identify adaptation rules for tacrolimus therapy
based on a clinical dataset and integrate them into a clinical
decision support system. The authors utilized patient data from
1995 to 2008 collected from the Department of Nephrology
and Dialysis of the Vienna General Hospital. The dataset in-
cluded patient demographics, laboratory parameters, time
since kidney transplantation, and other immunosuppressive
drugs administered. The researchers used a regression tree to
create homogeneous groups of data and developed semi-auto-
mated models for these groups to predict the drug concentra-
tion for the next ward round. The models were used to create
a knowledge base that was integrated into a clinical decision
support system for tacrolimus therapy planning to guide neph-
rologists. The paper also highlights the importance of creating
separate knowledge bases for each hospital due to differences
in medication methods and views.

In a study with a large Chinese cohort of renal transplant
recipients, Tang et al [7] compared the performance of mul-
tiple linear regression (MLR) and various ML techniques in
predicting the stable dose of tacrolimus. A total of 1,045 renal
transplant patients were included in the study, with 80% ran-
domly selected as the derivation cohort and the remaining 20%
as the validation cohort. ML models including artificial neural
network (ANN), regression tree (RT), multivariate adaptive re-
gression splines (MARS), boosted regression tree (BRT), sup-
port vector regression (SVR), random forest regression (RFR),
lasso regression (LAR), and Bayesian additive regression trees
(BART) were compared with MLR. Among the ML models,
the RT model performed the best in both the derivation and
validation cohorts, showing higher prediction accuracy com-
pared to MLR. The RT model demonstrated a prediction ac-
curacy of 0.71 in the derivation cohort and 0.73 in the valida-
tion cohort. The study highlights the potential of ML models,
particularly the regression tree model, in predicting the stable
dose of tacrolimus in renal transplant recipients.

Thishya et al [8] explored the use of ANN and logistic
regression (LR) models to predict the bioavailability of tacroli-
mus and the risk for post-transplant diabetes in patients with
renal transplantation. The study investigated the role of ge-
netic polymorphisms in ABCBI and CYP3A45 in predicting the
bioavailability of tacrolimus. The ANN model, with five-fold
cross-validation, demonstrated a good correlation with the ex-
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perimental data of tacrolimus bioavailability. Factors such as
younger age, male gender, and optimal body mass index were
associated with lower bioavailability of tacrolimus. Genetic
polymorphisms, specifically ABCBI 1236 C>T, 2677G>T/A,
and CYP3A453, were found to be inversely or positively as-
sociated with the bioavailability of tacrolimus. Gender bias
was observed in association with the ABCB1 3435 C>T pol-
ymorphism. Additionally, synergistic interactions between
CYP3A53 and ABCB1 2677 G>T/A were identified as deter-
minants of the risk for post-transplant diabetes. The LR model
revealed an independent association of ABCB1 2677 G>T/A
with post-transplant diabetes. The study employed multifactor
dimensionality reduction analysis (MDR) to identify synergis-
tic interactions between CYP3A5*3 and ABCB1 2677 G>T/A
as important factors contributing to the risk of post-transplant
diabetes. Overall, the ANN and MDR models utilized in this
study provide insights into the individual and synergistic ef-
fects of variables in modulating the bioavailability of tacroli-
mus and the risk for post-transplant diabetes in patients with
renal transplantation.

Cyclosporine

In their study, Camps-Valls et al [9] investigated the use of
neural networks to personalize the dosage of cyclosporine A
(CyA) in kidney transplant patients. They employed differ-
ent types of neural networks, including multilayer perceptron
(MLP), finite impulse response (FIR), and Elman recurrent
networks. The researchers created a two-model scheme where
the blood concentration predicted by the first model served as
input for the dosage prediction model. They trained the models
using data from 22 patients for training and tested them on data
from 10 patients. The ensemble of FIR and Elman networks
demonstrated the best performance, achieving an r value of
0.977 in the validation set. The authors highlighted that neural
models are suitable for this task due to their accuracy, preci-
sion, and robustness.

In another study, Goren et al [10] discusses the use of the
adaptive-network-based fuzzy inference system (ANFIS) to
predict CyA blood levels in renal transplantation patients. The
model was implemented using therapeutic drug monitoring
(TDM) data collected from 138 patients, with 20 input param-
eters including concurrent use of drugs, blood levels, sampling
time, age, gender, and dosing intervals The results of the study
showed that the ANFIS model produced eight rules and exhib-
ited a root mean square error (RMSE) of 0.045 with respect
to the training data and an error of 0.057 with respect to the
checking data in the MATLAB environment. This indicates
that the ANFIS model was able to effectively predict CyA con-
centration in blood samples. The authors concluded that their
model could effectively assist physicians in choosing the best
therapeutic drug dose in the clinical setting.

Mycophenolic Acid (MPA)

Although initially marketed as a fixed-dose drug, mycophe-
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nolate mofetil (MMF) faces challenges due to its pharma-
cokinetic variability, which results in different processing and
elimination rates among individuals. Another challenge is the
weak relationship between the dose of MMF and the expo-
sure of the body to its active form, MPA. A recent consensus
of the international association of therapeutic drug monitoring
and clinical toxicology [11], recommended MPA therapeutic
drug monitoring by estimating the MPA area under the curve
(AUC) to optimize treatment and improve patient outcomes.
Woillard et al [12] developed a machine-learning model to ac-
curately estimate the concentration of MMF in transplant pa-
tients. The models for estimating the concentration of MMF in
patients who have received kidney or heart transplants were
developed using extreme gradient boosting (Xgboost R pack-
age) ML models. The models were trained on a total of 12,877
MPA AUC from 0 to 12 h (AUCO - 12 h) requests from 6,884
patients sent to the Immunosuppressant Bayesian Dose Adjust-
ment expert system for AUC estimation and dose recommen-
dation based on MPA concentrations measured at least at three
sampling times (about 20 min, 1 and 3 h after dosing). The
data were split into a training set (75%) and a test set (25%),
and the Xgboost models in the training set with the lowest root
mean squared error (RMSE) in a 10-fold cross-validation ex-
periment was evaluated in the test set and in four independ-
ent full-pharmacokinetic (PK) datasets from renal or heart
transplant recipients. The models were based on two or three
concentrations, differences between these concentrations, rela-
tive deviations from theoretical times of sampling, presence of
a delayed absorption peak, and five covariates (dose, type of
transplantation, associated immunosuppressant, age, and time
between transplantation and sampling). The authors showed
that the model allowed for accurate estimation of the AUC of
MPA over a 12-h period. These models can be utilized for rou-
tine exposure estimation and dose adjustment of MPA. Fur-
thermore, the researchers plan to implement these ML models
in a dedicated web interface for convenient use.

Tolerance

Operative tolerance, a state of long-term allograft acceptance
without continuous immunosuppression, is an important tenet
for the success of solid organ transplantation that can help
minimize exposure of immunosuppressive treatments. In a re-
cent study, Fu et al [13], investigated the identification of po-
tential biomarkers for allograft tolerance in kidney transplan-
tation using ML techniques. The study utilized three publicly
available gene expression datasets from peripheral blood lym-
phocytes of 63 tolerant patients. The researchers compared 14
different ML models to predict spontaneous kidney graft toler-
ance, and the best subset selection (BSS) regression approach
emerged as the most powerful model. It exhibited a sensitivity
0f 91.7% and a specificity of 93.8% in the test group, as well
as a specificity of 86.1% and a sensitivity of 80% in the valida-
tion group. Using the BSS model, a feature set comprising five
genes (HLA-DOA, TCL1A, EBF1, CD79B, and PNOC) was
identified as predictive of allograft tolerance. Furthermore,
the downregulation of EBFI was identified as an independ-
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ent predictor of graft rejection and graft loss. By employing
a two-gene signature (EBF'1 and HLA-DOA) as input to their
classifier, the researchers achieved an AUC value of 84.4%.
Overall, this study highlights the potential of ML in un-
covering gene sets that could influence tolerance to renal al-
lografts. The identified genes, particularly EBF I, hold promise
as novel biological targets and may guide patient selection for
immunosuppressant withdrawal in clinical practice.

Advantages of Al-Powered Algorithms

Al and ML algorithms are promising new tools for improving
immunosuppressive drug adjustments in kidney transplantation.
Al-powered algorithms can consider individual patient charac-
teristics, such as age, gender, weight, genetic polymorphisms,
and concomitant medications, to develop personalized dosing
regimens. This can help to optimize drug efficacy and minimize
side effects. Al algorithms can also analyze large datasets of pa-
tient data to identify patterns and relationships that may be dif-
ficult to detect by human experts. This can lead to more accurate
and efficient drug dosing. Additionally, Al algorithms can help
to reduce the risk of human error in drug dosing, which is es-
pecially important for complex dosing regimens or for patients
taking multiple medications. The integration of AL/ML tech-
niques in the realm of kidney transplantation holds the promise
of not only predicting immunosuppressive drug levels but also
synergizing with existing quality improvement initiatives [14].
Finally, Al algorithms can be used to monitor patient drug levels
and adjust dosing regimens in real-time.

Limitations

Limitations of most of the studies include data quality, small
sample sizes, and inconsistency in the number of cases used for
model training, which can affect generalization. Inconsistent
data collection and classification may lead to the use of incorrect
features and introduce bias. Prospective and external validation
of Al models is lacking, and their improvement over traditional
methods may be marginal in certain transplantation aspects. ML
algorithms can be computationally complex and time-intensive.
Interpretability of ML models is a challenge. Ensuring rigorous
validation, considering computational resources, and assess-
ing the nature of the data and clinical questions are important.
Fairness evaluation and integration of non-clinical variables are
necessary for equitable systems. None of the studies conducted
so far have been validated on geographically distant cohorts,
and they have primarily focused on acute tacrolimus dosing. It
remains unclear whether these approaches would be beneficial
for longer-term dosing decisions. Further research is needed to
determine the effectiveness of these methods in different popu-
lations and for extended treatment durations.

Conclusions

In this comprehensive review, we have examined the studies
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that specifically investigate the use of Al-based algorithms to
predict immunosuppressive drug levels (Table 1) [4, 5, 7-10,
12]. However, it is important to acknowledge that tailoring im-
munosuppression involves considering various factors beyond
drug levels. Numerous studies have explored the application
of ML techniques in optimizing donor-recipient matching, fa-
cilitating the identification and availability of potential donors,
predicting allograft function and rejection, and assessing post-
transplant survival outcomes. Incorporating all this valuable
information will contribute to the personalized approach to
immunosuppression in kidney transplant patients. By leverag-
ing Al, we can enhance outcomes, provide more accurate per-
sonalized care, and shape the future of kidney transplantation.
Further advancements and integration of Al technology are
necessary to realize its full potential in optimizing immuno-
suppression strategies for kidney transplant patients.
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