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Abstract

Background: This study aimed to investigate the trends and an-
timicrobial resistance profile of extended-spectrum β-lactamase-
producing Escherichia coli (ESBL-EC) clinical isolates.

Methods: A total of 1,303 E. coli isolates from January 2012 to De-
cember 2017 at Fukuoka University Chikushi Hospital, Japan, were 
analyzed. The rate of resistance to cefmetazole (CMZ), flomoxef 
(FMOX), imipenem (IPM), meropenem (MEPM), amikacin (AMK), 
gentamicin (GM), minocycline (MINO), ciprofloxacin (CPFX), and 
levofloxacin (LVFX) was compared between non-ESBL-producing 
E. coli (non-ESBL-EC) and ESBL-EC.

Results: The proportion of ESBL-EC among all the E. coli isolates 
was 24.6% (320/1,303), and the proportion remained stable through-
out the study period. There was no difference in the rate of resistance 
to CMZ, FMOX, IPM, MEPM, and AMK between non-ESBL-EC 
and ESBL-EC; however, the rate of resistance to GM, MINO, CPFX, 
and LVFX was higher in ESBL-EC than in non-ESBL-EC (17.5% 
vs. 10.0%, 19.1% vs. 7.7%, 87.5% vs. 24.2%, and 87.5% vs. 23.5%, 
respectively; P < 0.01). The rate of resistance to CPFX and LVFX in 
ESBL-EC increased throughout the study course. The rate of E. coli 
isolates susceptible to all the antibiotics was significantly higher in 
non-ESBL-EC than in ESBL-EC (68.2% vs. 7.5%; P < 0.01), and this 
rate decreased significantly from 10.0% in 2012 to 3.8% in 2017 in 
ESBL-EC (P < 0.01).

Conclusions: Our findings indicate a changing antimicrobial resist-
ance profile of ESBL-EC, particularly to fluoroquinolones. Determi-
nation of the prevalence and antimicrobial resistance of ESBL-EC 
will help physicians in selecting the initial empirical treatment for 
patients with ESBL-EC infections.

Keywords: Escherichia coli; Extended-spectrum β-lactamase; Anti-
microbial resistance profile; Fluoroquinolone resistance

Introduction

Extended-spectrum β-lactamases (ESBLs) can hydrolyze penicil-
lins and oxyimino-cephalosporins, such as ceftazidime (CAZ), 
cefotaxime (CTX), and ceftriaxone, which have reportedly 
played important roles in the treatment of infections caused by 
Enterobacteriaceae, including Escherichia coli [1]. Recently, 
the prevalence of ESBL-producing E. coli (ESBL-EC) has been 
dramatically increasing worldwide [2-4]. In Japan, CTX-M-type 
ESBL-EC, which exhibits co-resistance to fluoroquinolones, has 
been detected more frequently than TEM- or SHV-type ESBL-EC 
[5, 6]. Infections caused by ESBL-EC are reportedly associated 
with poor clinical outcomes, inappropriate empirical antibiotic 
therapy, longer hospital stays, and greater hospital expenses [7-9].

Antimicrobial resistance patterns are often available for 
monitoring the endemicity of specific clones. In small- and 
medium-sized hospitals, antimicrobial resistance patterns are 
particularly useful for empiric therapy because it is difficult 
to routinely conduct genotyping in clinical laboratories. How-
ever, only few studies have been reported on trends and anti-
microbial resistance patterns of ESBL-EC in limited regions. 
Because of the increasing clinical importance of ESBL-EC, 
we should carefully monitor the prevalence and antimicrobial 
resistance profile of ESBL-EC at our facility. Thus, the aim of 
this study was to investigate the trends of the rate of detection 
and antimicrobial resistance of ESBL-EC at our hospital.

Methods

Setting

Fukuoka University Chikushi Hospital is a 310-bed university-
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affiliated hospital located in the southwestern district of Japan. 
This study was approved by the Fukuoka University Medical 
Ethics Review Board (R18-014). This study was conducted in 
compliance with the ethical standards of the responsible insti-
tution on human subjects as well as with the Helsinki Declara-
tion.

Collection and identification of isolates

E. coli clinical isolates were recovered from inpatients and 
outpatients who visited Fukuoka University Chikushi Hospital 
between January 2012 and December 2017. Only one isolate 
per patient per year was included in this study. For those pa-
tients from whom more than one isolate was recovered, only 
the first isolate for which the results of antimicrobial suscep-
tibility testing were available was included. The isolates were 
identified using the automated Vitek-2 system (Sysmex bi-
oMerieux, Tokyo, Japan).

Antimicrobial susceptibility testing

Antimicrobial susceptibility testing was performed using the 
automated Vitek-2 system, following the manufacturer’s in-
structions. The breakpoint (susceptible, intermediate, or re-
sistant) was determined according to the M100-S27 perfor-
mance standards established by the Clinical and Laboratory 
Standards Institute (CLSI) [10]. Nine antimicrobial agents 
were used for susceptibility testing: cefmetazole (CMZ), flo-
moxef (FMOX), imipenem (IPM), meropenem (MEPM), ami-
kacin (AMK), gentamicin (GM), minocycline (MINO), cipro-
floxacin (CPFX), and levofloxacin (LVFX).

ESBL detection

ESBL detection was performed by the double disk diffusion us-
ing both CTX, CAZ, and cefpodoxime (CPDX) alone and in 
combination with clavulanic acid. An increase in zone size of 
greater than or equal to 5 mm for CTX, CAZ, and CPDX with 

and without clavulanic acid was taken as an indication of ESBL 
production.

Statistical analysis

Categorical variables were compared using the Chi-squared 
test or Fisher’s exact test, as appropriate. Temporal trends of 
antimicrobial resistance were evaluated using linear regression 
analysis. The JMP software program (version 10, SAS Institute 
Inc., Cary, NC, USA) was used for all the statistical analyses. P 
< 0.05 was considered statistically significant.

Results

Prevalence of ESBL-EC

A total of 2,146 E. coli clinical isolates were recovered between 
January 2012 and December 2017. Of those, 1,303 (60.7%) iso-
lates were included in this study (Fig. 1). Further, 983 (75.4%) of 
the included 1,303 were non-ESBL-EC and 320 (24.6%) were 
ESBL-EC. The proportion of ESBL-EC among all the E. coli 
isolates was relatively stable throughout the study period (22.6-
27.2%) (Fig. 2).

Antimicrobial resistance profile of non-ESBL-EC and 
ESBL-EC

Almost all the E. coli isolates were susceptible to CMZ, 
FMOX, IPM, MEPM, and AMK, and there was no difference 
between non-ESBL-EC and ESBL-EC in the rate of resistance 
to these antibiotics. However, the rate of resistance to GM, 
MINO, CPFX, and LVFX was significantly higher in ESBL-
EC than in non-ESBL-EC (17.5% vs. 10.0%, 19.1% vs. 7.7%, 
87.5% vs. 24.2%, and 87.5% vs. 23.5%, respectively; P < 0.01) 
(Fig. 3). In ESBL-EC, the rate of resistance to GM and MINO 
was stable throughout the study period, whereas that to CPFX 
and LVFX increased over the study period (P = 0.048 and P = 

Figure 1. Samples analyzed in the present study.
Figure 2. Yearly rate of detection of ESBL-EC among all the E. coli 
isolates.
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0.062, respectively) (Fig. 4).

Change in the antimicrobial resistance pattern of ESBL-EC

A total of 34 resistance patterns were identified based on the re-
sistance profile of the nine antibiotics in the E. coli isolates (pat-
tern IDs: Null, I-a-f, II-a-h, III-a-i, IV-a-f, V-a-c, and VII) (Ta-
ble 1). Of the 983 non-ESBL-EC isolates, the pattern ID Null 
(susceptible to all nine antibiotics) was the predominant resist-
ance pattern (68.2%), followed by ID II-h (resistance to CPFX 
and LVFX), ID III-h (resistance to GM, CPFX, and LVFX), 
and ID I-e (resistance to MINO). Of the 320 ESBL-EC isolates, 
ID II-h (resistance to CPFX and LVFX) was the predominant 
resistance pattern (57.2%), followed by ID III-i (resistance to 
MINO, CPFX, and LVFX), ID III-h (resistance to GM, CPFX, 
and LVFX), and ID Null (susceptible to all antibiotics).

The yearly rates of detection of these predominant patterns 
in non-ESBL-EC and ESBL-EC are shown in Figure 5. There 
was no change in the rate of isolates with pattern ID in non-
ESBL-EC. In ESBL-EC, the rate of isolates with ID Null (sus-
ceptible to all antibiotics) decreased significantly from 10.0% 
in 2012 to 3.8% in 2017 (P < 0.01), and the rate of isolates with 
ID III-h (resistance to GM, CPFX, and LVFX) increased from 
4.0% in 2012 to 20.5% in 2017 (P < 0.01).

Discussion

In this study, we examined the trends of the rate of detection 
and antimicrobial resistance of ESBL-EC. The rate of detec-
tion of ESBL-EC has been 24.6% in the recent 6 years, which 
is in line with that reported by previous studies conducted in 
Japan [11-13]. However, at our hospital, the rate of detection 
of ESBL-EC exceeded 20% in 2012, and this value was high-
er than that during the same period at other facilities [3, 11, 
14, 15]. A study reported that of 135 Japanese travelers, 55 
(40.7%) carried ESBL after returning to Japan and that the ma-
jority of these carriers were returning from eastern and central 
Asia [16]. The Fukuoka Prefecture receives many immigrants 
and travelers from Southeast Asian countries with high carrier 
rates of ESBL-producing bacteria, which may contribute to the 
higher rate of detection of ESBL-EC at our hospital.

The rate of resistance of ESBL-EC to fluoroquinolones, 
such as CPFX and LVFX, was significantly higher than that 
of non-ESBL-EC, and this is consistent with the findings of 
a recent study conducted in Japan [13]. The resistance of ES-
BL-EC to fluoroquinolones is closely related to the genotype. 
There are three ESBL types: CTX-M, TEM, and SHV [1]. The 
CTX-M type is classified into five major groups: CTX-M-1, 
CTX-M-2, CTX-M-8, CTX-M-9, and CTX-M-25 [17]. CTX-
M-9 has been the predominant group in Japan since 2000 [6, 

Figure 3. Antimicrobial resistance profiles of non-ESBL-EC and ESBL-
EC (**P < 0.01).

Figure 4. Trends in the rates of resistance of ESBL-EC for GM, MINO, CPFX, and LVFX (*P < 0.05).
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18]. A previous report has suggested that 75% of the 24 strains 
in the CTX-M-14 and CTX-M-27 groups, which belong to 
the CTX-M-9 group, are resistant to LVFX [3]. In addition, a 
recently disseminated lineage of E. coli designated sequence 
type ST131 according to multilocus sequence typing (MLST) 
is associated with CTX-M-15, which belongs to the CTX-M-1 
group, that is usually fluoroquinolone resistant [19], and this 
type of ESBL-EC has been reported in Japan [3, 6]. In the an-
timicrobial resistance pattern analysis of ESBL-EC conducted 
in this study, the ESBL-EC pattern ID III-h, which shows re-
sistance to GM as well as fluoroquinolones, increased from 
4.0% in 2012 to 20.5% in 2017. Ender et al reported the trans-
mission of an ESBL-EC ST131 producing CTX-M-15 strain 
that is resistant to GM, trimethoprim-sulfamethoxazole, and 
fluoroquinolones between a father and his daughter [20]. It has 
been suggested that specific ESBL-EC clones, such as isolates 
with ST131, CTX-M-14, CTX-M-15, or CTX-M-27, are trans-
mitted in our hospital or the area surrounding our hospital.

Particularly for urinary tract infections, fluoroquinolones 
are still recommended as the initial treatment. However, in the 
present study, approximately 90% of ESBL-EC and 25% of 
non-ESBL-EC were resistant to fluoroquinolones, and fluoro-
quinolones as the initial treatment should be used with cau-
tion. Particularly in cases wherein infection with ESBL-EC is 
suspected, initial treatment with non-fluoroquinolone drugs 
should be considered. In previous studies, the use of immu-
nosuppressive drugs or corticosteroids, the use of quinolones 
prior to isolation, nursing home-associated infections, and an-
tibiotic administration within the preceding 30 days were the 
independent predictors associated with ESBL-EC bacteremia 

Figure 5. Changes in the antimicrobial resistance patterns of non-ES-
BL-EC and ESBL-EC.
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[13, 21]. Carbapenems may be recommended as the initial 
treatment for infectious cases with these factors [22]. In the 
present study, the sensitivity of ESBL-EC and non-ESBL-EC 
to CMZ and FMOX was as high as that previously reported 
in Japan [13, 21]. According to a previous multicenter retro-
spective study conducted using a propensity score, CMZ and 
FMOX were not inferior to carbapenems in the empirical and 
definitive treatment of ESBL-EC bacteremia regarding the 30-
day mortality rates and clinical success; hence, these cephems 
may be effective alternatives to carbapenems in the treatment 
of ESBL-EC bacteremia [23].

There are several limitations to this study. First, this study 
was conducted at a single center; hence, it is not clear if our 
results reflect the trend of ESBL-EC in Japan or in only the 
Fukuoka Prefecture. Second, we did not routinely conduct an-
timicrobial sensitivity tests for tazobactam/piperacillin (TAZ/
PIPC) against E. coli. Because TAZ/PIPC, like carbapenems, 
is recommended for the empirical treatment of infections with 
suspected urosepsis, it is necessary to consider routine sen-
sitivity testing at our hospital. Third, we have not stored the 
strain nor determined the ESBL type using polymerase chain 
reaction and the ESBL-EC strain type using MLST in the E. 
coli isolates. However, there were only few reports in Japan 
that compared the antimicrobial resistance profile between 
ESBL-EC and non-ESBL-EC, and there were no reports con-
cerning the trends in the resistance patterns.

In conclusion, the rate of detection of ESBL-EC has been 
24.6% in the recent 6 years. Almost all the E. coli isolates were 
susceptible to CMZ, FMOX, IPM, MEPM, and AMK; how-
ever, the rates of resistance to GM, MINO, CPFX, and LVFX 
were significantly higher in ESBL-EC than in non-ESBL-EC. 
In ESBL-EC, the rates of the isolates susceptible to all anti-
biotics decreased significantly during the study period, and 
the rates of the isolates resistant to GM, CPFX, and LVFX 
increased over the study period. ESBL-EC is an important re-
sistant strain for infection control or infection treatment, and 
it is necessary to carefully monitor the trends in its resistance 
profile and genotype in the future.
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