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Abstract

Background: This study was performed to clarify whether gut micro-
biota obtained from fecal samples could identify the type of diabetes 
in patients of each gender by using a combination of terminal restric-
tion fragment length polymorphism (T-RFLP) analysis and data min-
ing.

Methods: A cross-sectional study was performed at three centers. 
Fecal samples were collected from 12 Japanese patients with type 
1 diabetes mellitus (T1D), 18 patients with type 2 diabetes mellitus 
(T2D), and 31 subjects without diabetes mellitus (non-DM). Amplifi-
cation of fecal 16S rRNA was carried out. After digestion of the am-
plification products with restriction enzymes (AluI, BslI, HaeIII, and 
MspI), terminal restriction fragments (T-RFs) of DNA were detected. 
A data mining algorithm (classification and regression tree (CART) 
modeling system) provides a decision tree that classifies subjects into 
various groups according to pre-assigned characteristics.

Results: Among men, the error rate was 2.4% with MspI, while er-
ror rates were 0.0% with other restriction enzymes. Among women, 
the error rate was 0.0% with all restriction enzymes. The operational 
taxonomic units (OTUs) incorporated into the decision tree differed 
between men and women.

Conclusions: We were able to classify the 16SrRNA gene amplifi-
cation products obtained from fecal samples of T1D patients, T2D 

patients, and non-DM subjects with a high level of precision by com-
bining T-RFLP analysis and data mining. Specific gut microbiota pat-
terns were found for T1D and T2D patients, as well as a sex difference 
of the patterns.
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Introduction

Gut microbiota are increasingly recognized as having an im-
portant role in regulation of energy homeostasis and the im-
mune system [1], and analysis of gut microbiota is becoming 
instrumental for assessment of the etiology and pathogenesis 
of some diseases, especially inflammatory bowel disease [2, 
3]. The human gut contains approximately 100 trillion bacte-
ria, including more than 1,000 different bacterial species [4, 
5]. Conventional culture techniques can only detect 30% of the 
total gut microbiota [6], resulting in difficulty with performing 
meaningful analysis.

Recently, a new method has been proposed for analyz-
ing the gut microbiota. In the field of molecular microbiology, 
identification of bacteria by high throughput DNA amplifica-
tion and subsequent 16S rRNA gene sequencing has been used 
as a replacement for conventional culture techniques [7], and 
next-generation sequencing has been suggested as a suitable 
tool for studying the human microbiota [8]. However, the high 
cost and complexity of such methods are major obstacles to 
widespread adoption.

Terminal restriction fragment length polymorphisms (T-
RFLP) analysis is another molecular biological method that 
could be used to obtain quantitative data on the gut microbi-
ota [9]. This method is based on enzymatic digestion of PCR 
products and is suitable for handling many samples cost-effec-
tively, although it not useful for identifying bacterial species. 
Thus, research using T-RFLP analysis needs to be based on a 
new concept. Data mining is a process of sorting and analyzing 
large data sets to identify patterns and establish relationships. 
This technique could allow us to recognize even unknown bac-
teria from certain patterns. Using a data mining approach, we 
were previously successful in identifying smokers by examin-
ing fecal samples from 92 Japanese men [10].
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Diabetes mellitus is a metabolic disorder characterized by 
chronic hyperglycemia due to insufficient action of insulin and 
there are two major types. Type 1 diabetes (T1D) is caused by 
autoimmune destruction of pancreatic β cells, whereas type 2 
diabetes (T2D) arises from the combination of relatively insuf-
ficient insulin secretion and obesity-associated insulin resist-
ance.

A previous study of gender differences in the gut micro-
biota showed that the microbiota may regulate sex hormone 
levels and influence individual susceptibility to autoimmunity 
[11].

Based on the above considerations, this study was per-
formed to clarify whether gut microbiota obtained from fecal 
samples could identify the type of diabetes in patients of each 
gender by using a combination of T-RFLP analysis and data 
mining.

Methods

Study design

A cross-sectional study was performed at three centers in Ja-
pan: St. Marianna University School of Medicine Hospital 
(Kawasaki, Japan), Tokyo Saiseikai Central Hospital (Tokyo, 
Japan), and Furukawa Hospital (Yokohama, Japan).

Subjects

Between April 2015 and December 2016, 12 Japanese pa-
tients with T1D, 18 patients with T2D, and 31 subjects without 
diabetes mellitus (non-DM) were enrolled in this study. The 
subjects included 37 men (four patients with T1D, 14 patients 
T2D, and 19 non-DM subjects) and 24 women (eight patients 
with T1D, four patients with T2D, and 12 non-DM subjects). 
Diabetes was diagnosed and classified as type 1 or type 2 by 
diabetologists. The exclusion criteria for this study were as 
follows: 1) Antimicrobial therapy; 2) Prior gastrointestinal 
surgery; and 3) Severe liver or kidney disease. The non-DM 
group was recruited from among persons undergoing regular 
health screening tests.

This study was conducted in accordance with the ethical 
principles of the Declaration of Helsinki, and was approved 
by the ethics committee of St. Marianna University School of 
Medicine. All patients gave written informed consent prior to 
participation.

Materials

Fecal samples were collected from the subjects and bacterial 
DNA was isolated from 100 mg of feces using the method 
described by Takahashi et al [12]. Amplification of fecal 16S 
rRNA was carried out as described by Nagashima et al [13]. 
After digestion of the amplification products with restriction 
enzymes (AluI, BslI, HaeIII, and MspI), terminal restriction 
fragments (T-RFs) of DNA were detected. T-RF lengths were 

determined with an ABI PRISM® 3130xl Genetic Analyzer 
(Applied Biosystems, Foster City, CA, USA). As the apparent 
size of identical T-RFs may vary by 1 - 2 bp among differ-
ent gels and/or different lanes of the same gel, major T-RFs 
having a size within 1 - 2 bp were summarized as operational 
taxonomic units (OTUs). Each OTU was designated on the ba-
sis of the restriction enzyme and restriction fragment length 
(bp), for example the AluI 44 bp OTU was abbreviated as A44. 
OTUs were quantified by determining the percentage of each 
individual OTU relative to the total OTU area, and this was 
expressed as the peak percent area under the curve (% area 
under the curve (AUC)).

Statistical analysis

A data mining algorithm (classification and regression tree 
(CART) modeling system), which is the usual method of 
data mining, provides a decision tree that classifies subjects 
into various groups according to pre-assigned characteristics. 
CART divides subjects into two subsets by comparing the 
Gini coefficient according to the OTU data, such that the sub-
jects within each subset are more homogeneous than in the 
previous subset. The CART system is flexible and allows un-
equal misclassification costs to be considered, unlike the oth-
er data mining systems. A major point of data mining and the 
decision tree thus constructed is that a single selected OTU 
is used for each step of the tree. The default setting of the 
CART system allows a decision tree to grow up to five steps. 
Balance nodes [14], which are boosting and duplicating a mi-
nor data, are used to correct imbalances in the dataset, which 
readily develop with higher nominal partitions, and we con-
firmed that more accurate results could be obtained with the 
specified test criteria. If necessary, balancing is carried out by 
boosting infrequent values at the time of decision tree con-
struction.

Results

Baseline characteristics of the subjects are shown in Table 1. 
In the present study, all patients diagnosed with T1D showed 
an acute-onset pattern of hyperglycemia and were positive for 
glutamic acid decarboxylase (GAD) antibody by radioimmune 
assay. The median (interquartile range: IQR) age of the T1D 
group, T2D group, and non-DM group was 46 (38 - 60) years, 
45 (40 - 63) years, and 47 (41 - 53) years, respectively (P = 
0.833). Body mass index (BMI) was 21.7 (19.8 - 23.8), 28.9 
(25.0 - 32.0), and 22.0 (19.8 - 24.8) kg/m2, respectively (P < 
0.001), being higher in the T2D group than in the other groups. 
The estimated duration of diabetes was 4.0 (1.0 - 5.0) years in 
the T1D group and 3.0 (1.0 - 4.3) years in the T2D group (P = 
0.232). Hemoglobin A1c (HbA1c) was 7.5% (6.7-8.6%) and 
10.1% (9.2-12.0%), respectively (P < 0.001), being higher in 
the T2D group than in T1D group. Antidiabetic drugs are also 
shown in Table 1.

Data mining provided the decision trees displayed in Fig-
ure 1. Figure 1a, which was applied the balance node (i.e. us-
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ing T1D twice), shows the decision tree obtained by using the 
restriction enzyme BslI in men. Node 0 (at the left side of the 
tree) was divided into nodes 1 and 2 by using B366 with a cut-
off value of 1.334. In node 1 (B366 ≤ 1.334), all nine subjects 
were from the non-DM group, while node 2 (B366 > 1.334) 
included eight patients with T1D, 14 patients with T2D, and 10 
subjects from the non-DM group. After performing five similar 
steps, all of the subjects were classified and the decision tree 
was constructed. Six of the eight T1D patients were classified 
at node 8 (B366 > 1.334, B749 > 3.032, and B968 > 0.980), 
while 12 of 14 T2D patients were classified at node 9 (B366 
> 1.334, B749 ≤ 3.032, B338 ≤ 1.613, and B494 ≤ 8.932). In 
the T1D group, six patients were classified at node 8 and two 
were classified at node 12. In the T2D group, 12 patients were 
classified at node 9 and two were classified at node 14. In the 
non-DM group, nine subjects were classified at node 1, three 
were classified at node 6, one was classified at node 10, and six 
were classified at node 13.

Figure 1b, which was applied the balance node (i.e. using 
T2D twice), shows the results obtained in women using the 
restriction enzyme BslI. Node 0 was divided into nodes 1 and 
2 by using B366 with a cut-off value of 5.342. Node 1 (B366 
≤ 5.342) contained two patients with T1D, eight patients with 
T2D, and 12 non-DM subjects, while node 2 (B366 > 5.342) 
contained six T1D patients. The decision tree for women only 
required four similar steps to classify all of the female sub-
jects, so it was simpler than the decision tree for men. In the 
T2D group, all eight patients were classified at node 7 (B366 

≤ 5.342, B110 > 1.751, B853 ≤ 1.567, and B317 ≤ 2.612). In 
the T1D group, six patients were classified at node 2 and two 
patients were classified at node 10. In the non-DM group, 10 
subjects were classified at node 3, one was classified at node 8, 
and one was classified at node 9.

The results of decision tree analysis using four restric-
tion enzymes are shown in Table 2. Among men, the error rate 
was 2.4% with MspI, while error rates were 0.0% with other 
restriction enzymes. Among women, the error rate was 0.0% 
with all restriction enzymes. The OTUs incorporated into the 
decision tree differed between men and women. In both men 
and women, node 0 was divided into nodes 1 and 2 by us-
ing B366. But the cut-off values were different between them 
(1.334 in men, 5.342 in women). Even after the second step, 
men and women showed different OTUs and the cut-off values 
(Fig. 1a, b). As shown in Table 2, the OTUs incorporated with 
other restriction enzymes were also totally different between 
men and women.

Discussion

In the present study, the combination of T-RFLP analysis and 
data mining was able to precisely classify the 16S rRNA gene 
amplification products obtained from fecal samples of the 
non-DM, T1D, and T2D groups. To our knowledge, no widely 
available data mining algorithm has previously been able to 
classify the type of diabetes by analysis of fecal samples. Our 

Table 1.  Characteristics of the Subjects (Median (IQR))

T1D group T2D group Non-DM group
Number 12 18 31
Gender (women/men) 8/4 4/14 12/19
Age (years) 46 (38 - 60) 45 (40 - 63) 47 (41 - 53) P = 0.833
Weight (kg) 52.5 (51.0 - 66.8) 73.8 (68.0 - 92.1)a 61 (49.0 - 68.0)b P < 0.001
BMI (kg/m2) 21.7 (19.8 - 23.8) 28.9 (25.0 - 32.0) a 2.0 (19.8 - 24.8) b P < 0.001
Duration of DM (years) 4.0 (1.0 - 5.0) 3.0 (1.0 - 4.3) - P = 0.232
Neuropathy (+/-) 0/12 1/17 -
Retinopathy (+/-) 0/12 2/16 -
Nephropathy (stage 1/2/3/4/5) 12/0/0/0/0 13/5/0/0/0 -
HbA1c (%) 7.5 (6.7 - 8.6) 10.1 (9.2 - 12.0) - P < 0.001
Antidiabetic drugs
  Insulin 12 13
  Metformin 1 13
  DPP4-I 0 10
  αGI 1 6
  GLP-1RA 0 4
  Glinide 0 2
  SGLT2-I 0 1

IQR: interquartile range; T1D: type 1 diabetes mellitus; T2D: type 2 diabetes mellitus; non-DM: non-diabetes mellitus; BMI: body mass index; DM: 
diabetes mellitus; HbA1c: hemoglobin A1c; αGI: α-glucosidase inhibitor, DPP4-I: dipeptidyl peptidase-4 inhibitor; GLP-1RA: glucagon-like peptide-1 
receptor agonist; SGLT2: sodium-glucose cotransporter 2 inhibitor. avs. T1D; bvs. T2D.
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results suggest that non-DM persons, T1D patients, and T2D 
patients have specific gut microbiota patterns. It is interesting 
to note that T1D and T2D patients showed different patterns, 

even though both groups had metabolic disorders associated 
with hyperglycemia. Pathophysiology of T1D might not be 
homogeneous; therefore, we included acute onset T1D with 

Figure 1. Decision trees created by the classification and regression tree (CART) method based on BslI digestion of 16SrRNA 
gene amplification products from fecal samples. Each operation taxonomic unit (OTU) is named by the combination of a restric-
tion enzyme and restriction fragment length (bp). For example, the BslI 366 bp OTU is designated as B366. The cut-off value for 
each OTU was calculated from the OTU data of all subjects by the CART method using the Gini coefficient. Similar steps were 
repeated to construct the decision tree. Node 0 (at the left side of the decision tree) is the root node, namely the starting point for 
construction of the tree. The decision tree pathways indicate the species, quantities, and OTUs used to divide the different groups 
of subjects. (a) Decision tree for men. (b) Decision tree for women. non-DM: non-diabetes mellitus group; T1D: type 1 diabetes 
mellitus group; T2D: type 2 diabetes mellitus group.
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GAD antibody and relatively recent onset (disease duration < 
5 years) in this study. The reason why we could see clear dif-
ference between T1D and controls may be due to focusing on 
this “pure” population in T1D.

A previous study of T1D suggested that human gut mi-
crobiota have a role in the onset of this autoimmune disor-
der in young children with a high genetic risk profile [15]. A 
striking result of that study was the increase of Bacteroidetes 
and decline of Firmicutes in the gut microbiome over time as 
autoimmunity developed. In the present study, most subjects 
with T1D were assigned to the node with a higher OTU of 
B366 which contains Bacteroidetes, indicating that our find-
ings were consistent with the previous report [15]. It is possi-
ble that our method could become a bacterial marker for early 
diagnosis of T1D or for predicting its onset among persons 
with a high risk of developing T1D.

Many studies have investigated associations between the 
gut microbiota and T2D, but few have found a causal rela-
tionship between gut microbiota and the onset of T2D. The 
changes of gut microbiota have been different in every study, 
suggesting that short-chain fatty acid (SCFA) or micro-inflam-
mation might explain the association between gut microbiota 
and T2D [16, 17]. On the other hand, a decrease in SCFA is 
associated with intestinal barrier failure and translocation of li-
popolysaccharide and gut bacteria into the circulation, leading 
to development of insulin resistance [18]. Changes of lipopol-
ysaccharide and SCFA were not confirmed in the present study. 
However, the gut microbiota pattern which is characteristic of 
T2D may cause such changes.

Data mining by the CART method achieves reproducibil-
ity. After it has been used to create a decision tree, other indi-
viduals can be classified by applying the same process [19]. 
For example, a man would be classified at node 8 of Figure 
1a if the OTUs of his gut microbiota digested by BslI showed 
B366 > 1.334, B749 > 3.032, and B968 > 0.980. In the present 
study, most men with T1D were classified at node 8 using BslI, 
suggesting that this gut microbiota pattern is characteristic of 
T1D. Accordingly, a male individual classified at node 8 may 
be likely to have T1D or an increased risk of developing it. 
Accordingly, it is possible that this method could be used to 
support the diagnosis of diabetes.

The main method currently employed for analysis of the 
gut microbiota is next generation sequencing. However, it has 

the weaknesses of ignoring unknown microbiota and high cost. 
We combined T-RFLP analysis with data mining in the present 
study, allowing us to recognize the overall pattern of gut mi-
crobiota and to evaluate the influence of unknown microbiota. 
In addition, the cost of our method is relatively low.

This study had several limitations. First, the number of the 
subjects was small. Second, the subjects were all Japanese, so 
we were unable to assess the influence of ethnic differences. 
Therefore, further large-scale studies will be needed to confirm 
our results.

In conclusion, we were able to classify the 16SrRNA gene 
amplification products obtained from fecal samples of T1D 
patients, T2D patients, and non-DM subjects with a high level 
of precision by combining T-RFLP analysis and data mining. 
Specific gut microbiota patterns were found for T1D and T2D 
patients, as well as a sex difference of the patterns.
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