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Abstract

Background: Previous studies suggest that type 2 diabetes mellitus 
(T2DM) is associated with a loss of muscle mass but the impact of 
fasting blood glucose (FBG) on body composition remains underap-
preciated in pre-diabetic subjects. The aim of this study was to de-
termine the influence of FBG on lean mass (LM), fat mass (FM) and 
their distribution (trunk vs. appendicular), separately in middle-aged 
men and women.

Methods: One thousand nine hundred and eleven (1,911) men (63.9 
± 11.7 years) and 1,977 women (63.7 ± 12.1 years) from the National 
Health and Nutrition Examination Survey (1999 - 2004) were divided 
into four groups: normal glucose tolerance (NGT), low impaired fast-
ing glucose (IFG), high IFG and T2DM. Body composition was ob-
tained from dual X-ray absorptiometry (DXA).

Results: Of the patients, 68.7% had NGT, 16.1% low IFG, 9.4% high 
IFG and 5.8% T2DM. After adjustment for age, body mass index, 
ethnicity, smoking, alcohol and physical activity (PA), no change in 
appendicular LM was observed between groups, but significant in-
creases in trunk FM (in both gender) and trunk LM (in women) were 
found with increased glucose intolerance (T2DM > IFG > NGT), as 
well as significant decreases in trunk and total LM/FM ratios (T2DM 
< IFG < NGT) and a significant increase in trunk/appendicular FM 
ratio (T2DM > IFG > NGT).

Conclusions: Elevated FBG within the normal range is not associ-

ated with a significant loss of appendicular LM, but modifications in 
LM and FM trunk and total distribution with IFG suggest that nutri-
tional and physical lifestyle strategies should be implemented in the 
pre-diabetic state.

Keywords: Type 2 diabetes mellitus; Body composition; Gender; In-
sulin resistance; Mobility

Introduction

Recent studies have questioned about the impact of type 2 dia-
betes mellitus (T2DM) on muscle mass, but the results remain 
unclear and the hypothesis that T2DM is responsible for a loss 
of muscle mass is uncertain [1]. According to some experi-
mental studies, insulin resistance (IR) can alter muscle protein 
turnover due to a disruption of intracellular insulin signaling 
pathways [2, 3]. This reduced metabolic response to insulin 
affects different key components of muscle, including mito-
chondria, which play a crucial role in energy production and 
ensure integrity of muscle [4]. Thus, in T2DM patients, IR but 
also the lack of insulin secretion could contribute to an altered 
muscle protein synthesis [5], and a progressive reduction of 
the muscle mass and function, favoring potential subsequent 
disabilities [6-9].

As part of the clinical routine, fasting blood glucose 
(FBG) concentrations provide through its large variability 
among populations a remarkable range of data spanning from 
normal glycemia to impaired fasting glucose (IFG) to T2DM. 
It has been demonstrated that higher FBG levels within the 
normoglycemic range constitute an independent risk factor for 
T2DM (i.e., subjects with IFG or impaired glucose tolerance 
(IGT)) [10]. Given that functional disabilities occur twice as 
often in T2DM patients compared with patients without T2DM 
[11] and that patients with pre-diabetes have a 10% annual 
conversion rate to T2DM [12], it seems of clinical interest to 
question the relationship between blood glucose homeostasis 
and muscle mass and function. This is particularly interesting 
since muscle mass and fat mass (FM) are known to act as a dia-
betogenic duo favoring IR and related cardiometabolic risks 
[13]. The impact of the glycemic status on body composition 
and muscle function, however, remains poorly questioned in 
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pre-diabetic patients.
The Third National Health and Nutrition Examination 

Survey (NHANES III), representative of the North American 
population between 1988 and 1994, revealed an inversed re-
lationship between skeletal muscle mass index and IR, gly-
cated hemoglobin and prevalence of pre-diabetes [14]. The 
NHANES III survey however used bioelectrical impedance 
analyzers to assess body composition, which remains an in-
direct method and limits the interpretation of their results. 
Moreover, although they adjusted their analysis for gender, 
males and females were pooled. Nevertheless, the sexual 
dimorphism in lean and fat tissue amount and distribution 
should be considered. While it appears necessary to conduct 
deeper and more precise analysis regarding this association 
between body composition and glucose profile, the 1999 - 
2004 NHANES survey provides us with data based on dual 
X-ray absorptiometry (DXA) scans (as one of the gold stand-
ards for the measure of body composition). The aim of the 
present study was then to question the impact of FBG on total 
and segmental muscle mass and FM in women and men. We 
hypothesis that impaired FBG (pre-diabetic stages) leads to 
altered body composition in adults and that body composi-
tion is affected by gender. Thus, we examined the associations 
between FBG (across a wide spectrum of FBG from normal 
glucose tolerance (NGT)) to T2DM) and lean and fat tissues 
(both appendicular and trunk distribution), separately in men 
and women.

Materials and Methods

Study population

Based on a complex sampling process using the latest census 
techniques, 31,126 participants representative of the North 
American population were selected in cross-sectional studies 
between 1999 and 2004 [15]. Participants provided their writ-
ten informed consent and the study protocol was approved by 
the institutional review board of the Centers for Disease Con-
trol and Prevention (CDC). The data collected were released 
for free access by the NHANES researchers and were down-
loaded from the CDC website.

Sample analysis

We restricted our analysis to NHANES participants (men 
and women over 45 years of age), whose records had avail-
able DXA, FBG measurement, anthropometric data (i.e., 
gender, age, height, weight and ethnicity), documentation 
of tobacco and alcohol consumption, and physical activity 
(PA).

Glycemic status

Based on FBG, our population was divided into four groups 
following the American Diabetes Association criteria as fol-

lows: 1) NGT (FBG < 5.6 mmol/L) (n = 2,677); 2) low IFG 
(5.6 ≤ FBG < 6.1 mmol/L) (n = 627); 3) high IFG (6.1 ≤ FBG 
< 7 mmol/L) (n = 367); and 4) T2DM (FBG ≥ 7 mmol/L) (n = 
224) [16]. Because of the heterogeneity of antidiabetic treat-
ments in the NHANES’ population, only untreated T2DM were 
included. IR was expressed by homeostasis model assessment 
of insulin resistance (HOMA-IR) calculated by the formula 
HOMA-IR = glycemia (mmol/L) × insulinemia (mUI/L)/22.5 
(HOMA-IR > 2.55) [17].

Anthropometric measurement and body composition

Height was measured by experienced technicians according 
to a standardized protocol. Weight and total body composition 
were measured by DXA using a Hologic QDR 400A dual pho-
ton densitometer (Hologic, Bedford, MA, USA). The DXA 
results were analyzed using Hologic Discovery software ver-
sion 12.1 (Hologic), with a validity and reproducibility pro-
tocol previously reported [9, 18]. The body was segmented 
into two regions: trunk and limbs. For each region, FM and 
fat-free mass (FFM) were measured, with the sum of the two 
representing the total weight of the region. Then, bone min-
eral content was subtracted from FFM to define non-bone lean 
mass (LM). Trunk LM was calculated as the sum of trunk 
muscle mass and trunk visceral mass. Appendicular LM was 
calculated as the sum of lean soft tissue mass (fat-free, non-
bone) in the arms and legs, which represents skeletal muscle 
mass of the limbs.

Covariate adjustments

The other characteristics analyzed included age (years) and 
ethnicity (Caucasian, African American, Hispanic or multieth-
nic). Smoking status (daily smoker, occasional or non-smok-
ing), alcohol consumption (g/day) and PA (h/day) were also 
considered as potential confounders. PA was assessed using 
standardized questionnaires that catalogue daily household 
and sporting activities, which were then classified into three 
groups according to their intensity (low: < 3 metabolic equiva-
lent of the task (MET); moderate: 3 - 6 METs; and vigorous: 
> 6 METs) to obtain the number of hours per day at each level 
of intensity [19].

Muscle function

The impact of FBG on muscle function was assessed by the 
time to complete a 20-foot walk. The walking time as a func-
tion of leg LM was also calculated [20].

Statistical analyses

Statistical analysis was performed using Stata software, ver-
sion 13 (StataCorp, College Station, TX, USA). The tests were 
two-sided, with a type I error set at α = 0.05. Patient’s char-
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acteristics were presented as the mean ± standard deviation 
according to statistical distribution (assumption of normality 
assessed by using the Shapiro-Wilk test) and as the number of 
patients and associated percentages for categorical parame-
ters. Comparisons between groups (NGT, low IFG, high IFG, 
and T2DM) were performed using the Chi-squared or Fisher’s 
exact test for categorical variables, and ANOVA or Kruskal-
Wallis test when assumptions of ANOVA were not met (nor-
mality and homoscedasticity studied by Bartlett test) for 
quantitative parameters. When appropriate (omnibus P-value 
< 0.05), a post hoc test for multiple comparisons was applied 
to take into account inflate of type I error: Tukey-Kramer test 
post ANOVA and Dunn after Kruskal-Wallis. The study of re-
lationships between quantitative parameters was analyzed us-
ing correlation coefficients (Pearson or Spearman according 
to statistical distribution). Finally, multivariate analyses were 
performed by linear models using covariates determined ac-
cording to univariate results and clinical relevance: age, BMI, 
ethnicity, alcohol and tobacco consumption, and PA. When 
appropriate (normality of residuals was not verified), a loga-
rithmic transformation was proposed to achieve normality of 

dependent variables.

Results

Population characteristics

The characteristics of the whole population are presented 
in Table 1 for men (n = 1,911), and Table 2 for women (n = 
1,977). Mean BMI was 28.8 ± 5.8 kg/m2 for women and 27.9 ± 
4.7 kg/m2 for men. Of the samples, 68.7% had NGT and 31.3% 
had abnormality of glucose regulation: 16.1% had low IFG, 
9.4% had high IFG, and 5.8% had T2DM. Both in men and 
women, patients with T2DM and IFG had significantly higher 
BMI than those with NGT (P < 0.05). HOMA-IR significantly 
increases (from NGT to T2DM group) in both men and women 
(P < 0.05). Alcohol consumption did not differ between groups 
among women, while in men, T2DM group consumed less al-
cohol (P < 0.05). In women, low-intensity PA increases with 
FBG (P < 0.05), while moderate and vigorous PA decreases 

Table 1.  Characteristics of All Participants in Men

Men NGT (n = 1,223) Low IFG (n = 330) High IFG (n = 228) T2DM (n = 130) P-value
Age (years) 63.0 ± 11.9b 64.9 ± 12.0a 66.7 ± 11.5a 64.8 ± 10.3a,b < 0.0001
Height (cm) 173.4 ± 7.6 173.4 ± 7.6 173.0 ± 7.4 172.7 ± 7.5 NS
Weight (kg) 83.3 ± 16.0c 84.5 ± 16.1b,c 87.4 ± 19.3b 88.5 ± 18.0a < 0.0001
Body mass index (kg/m2) 27.6 ± 4.5c 28.0 ± 4.5c 29.1 ± 5.7b 29.7 ± 5.6a < 0.0001
Waist circumference (cm) 100.6 ± 12.2c 102.3 ± 12.1b 105.4 ± 14.2a 106.4 ± 12.5a < 0.0001
Fasting blood glucose (mmol/L) 5.03 ± 0.4d 5.81 ± 0.1c 6.4 ± 0.3b 9.3 ± 2.4a < 0.0001
HbA1c (%) 5.42 ± 0.4d 5.6 ± 0.5c 5.8 ± 0.6b 7.5 ± 2.0a < 0.0001
Alcohol (g/day) 11.6 ± 25.4a 10.8 ± 22.6a 13.3 ± 29.3a 5.7 ± 15.2b 0.0002
Physical activity (PA) (h/day)
  Low intensity PA (h/day) 2.8 ± 1.6 2.8 ± 1.6 2.8 ± 1.8 2.9 ± 1.6 NS
  Moderate intensity PA (h/day) 0.6 ± 1.2 0.5 ± 1.1 0.6 ± 1.2 0.6 ± 1.3 NS
  Vigorous intensity PA (h/day) 0.1 ± 0.4 0.1 ± 0.3 0.1 ± 0.2 0.1 ± 0.5 NS
Ethnicity, n (%)
  Hispanic and other 325 (26.5) 99 (30.0) 63 (27.6) 45 (34.6) 0.002
  Non-Hispanic White 707 (57.8) 197 (59.7) 130 (57.0) 64 (49.2) 0.001
  Non-Hispanic Black 191 (15.7) 34 (10.3) 35 (15.4) 21 (16.2) 0.005
Smoking status, n (%)
  Current smoker 244 (20.0) 52 (15.8) 32 (14.0) 19 (14.6) 0.021
  Occasionally 30 (2.5) 8 (2.4) 7 (3.1) 5 (3.8) NS
  Never smoker 949 (77.5) 270 (81.8) 189 (82.9) 106 (81.6) NS
Insulin (µU/mL) 9.2 ± 6.8c 12.0 ± 7.7c 14.9 ± 10.3b 20.1 ± 17.4a < 0.0001
HOMA-IR 2.1 ± 1.6c 3.1 ± 2.0c 4.3 ± 3.1b 8.0 ± 7.1a < 0.0001
CRP (mg/dL) 0.4 ± 0.7 0.5 ± 1.1 0.6 ± 1.2 0.6 ± 1.4 NS

Data are mean with standard deviation or n with percentage in brackets. Groups marked with different letters (a, b, c, d) are significantly different 
from each other by a Tukey-Kramer pairwise comparison (P < 0.05). Groups marked with the same letters are not significantly different from each 
other. WC: waist circumference; FBG: fasting blood glucose; PA: physical activity; HOMA-IR: homeostasis model assessment of insulin resistance; 
CRP: C-reactive protein.



Articles © The authors   |   Journal compilation © J Clin Med Res and Elmer Press Inc™   |   www.jocmr.org920

Impaired FBG Alters Body Composition J Clin Med Res. 2017;9(11):917-925

with FBG (P < 0.05). In men, there is no significant variation 
in PA between groups.

FM and LM distribution

Univariate analysis of body composition parameters is pre-
sented in Table 3 for men and women.

Multivariate analyses are presented in Figure 1 for men 
and Figure 2 for women. For men, appendicular LM and FM 
did not differ between groups. For women, appendicular LM 
did not differ but appendicular FM is higher in IFG groups 
compared to NGT and T2DM groups (P < 0.05), and higher 
in T2DM group compared to NGT group (P < 0.05). Concern-
ing trunk, trunk FM is higher in high IFG and T2DM groups 
compared to NGT group (P < 0.05), in both men and women. 
In women, trunk LM is higher in IFG and T2DM groups com-
pared to NGT group (P < 0.05). As a consequence of these 
results, in men, LM/FM ratios are significantly lower in high 
IFG and T2DM groups compared to NGT group for both trunk 

(P < 0.05) and total ratios (P < 0.05). In women, the trunk and 
total LM/FM ratios are not significant between groups. Al-
though the results show lower appendicular LM/FM ratios in 
IFG groups compared with NGT in women, this remains non-
significant. In both genders, trunk/appendicular FM ratios are 
higher in high IFG and T2DM groups compared to NGT group 
(appendicular FM increases more slowly with FBG than trunk 
FM).

Muscle function

There is no significant difference in the absolute walking 
time to complete 20 feet between groups in men (6.7 ± 2.9 
s for NGT, 6.7 ± 2.2 s for low IFG, 6.9 ± 2.4 s for high 
IFG and 6.9 ± 2.3 s for T2DM; P = 0.87), nor women (7.1 
± 3.6 s for NGT, 7.5 ± 3.9 s for low IFG, 7.7 ± 3.1 s for 
high IFG and 7.9 ± 3.6 s for T2DM; P = 0.31), neither us-
ing multivariate analysis. The walking time relative to leg 
LM was also not significant between groups in both men 

Table 2.  Characteristics of All Participants in Women

Women NGT (n = 1,448) Low IFG (n = 296) High IFG (n = 139) T2DM (n = 94) P-value
Age (years) 62.8 ± 12.1b 65.6 ± 12.1a 67.0 ± 11.8a 66.6 ± 10.3a < 0.0001
Height (cm) 159.8 ± 7.0 159.7 ± 6.5 158.3 ± 7.6 159.2 ± 7.5 NS
Weight (kg) 72.4 ± 16.7c 76.5 ± 17.7b 77.5 ± 18.0a,b 78.4 ± 18.0a < 0.0001
Body mass index (kg/m2) 28.3 ± 6.0c 29.9 ± 6.3b 30.8 ± 6.3a 30.8 ± 5.6a < 0.0001
Waist circumference (cm) 94.1 ± 13.6c 98.9 ± 13.5b 101.7 ± 13.2a 103.1 ± 12.5a < 0.0001
Fasting blood glucose (mmol/L) 5.0 ± 0.4d 5.80 ± 0.1c 6.44 ± 0.3b 9.4 ± 2.7a < 0.0001
HbA1c (%) 5.4 ± 0.3d 5.6 ± 0.4c 5.9 ± 0.5b 7.4 ± 2.0a < 0.0001
Alcohol (g/day) 3.6 ± 12.1 3.9 ± 13.2 3.8 ± 15.1 5.1 ± 18.9 NS
Physical activity (PA) (h/day)
  Low intensity PA (h/day) 2.8 ± 1.6b 3.0 ± 1.6b 3.0 ± 1.6b 2.9 ± 1.6a < 0.0001
  Moderate intensity PA (h/day) 0.5 ± 0.9a 0.4 ± 0.8a 0.4 ± 1.0a 0.6 ± 1.3b < 0.01
  Vigorous intensity PA (h/day) 0.08 ± 0.27a 0.1 ± 0.3b 0.03 ± 0.14b,c 0.02 ± 0.07c < 0.05
Ethnicity, n (%)
  Hispanic and other 398 (27.5) 77 (26.0) 51 (36.7) 31 (33.0) < 0.0001
  Non-Hispanic White 827 (57.1) 171 (57.8) 64 (46.0) 37 (39.3) < 0.0001
  Non-Hispanic Black 223 (15.4) 48 (16.2) 24 (17.3) 26 (27.7) 0.001
Smoking status, n (%)
  Current smoker 186 (12.9) 52 (15.8) 32 (14.0) 19 (14.6) NS
  Occasionally 27 (1.9) 8 (2.4) 7 (3.1) 5 (3.8) NS
  Never smoker 1235 (85.2) 270 (81.8) 189 (82.9) 106 (81.6) NS
Insulin (µU/mL) 9.2 ± 6.8c 13.9 ± 8.8b 16.0 ± 9.0b 21.9 ± 17.0a < 0.0001
HOMA-IR 2.1 ± 1.6c 3.6 ± 2.3b 4.6 ± 2.6b 9.2 ± 7.8a < 0.0001
CRP (mg/dL) 0.4 ± 0.7b 0.6 ± 0.8b 0.7 ± 0.9a,b 0.8 ± 0.9a,b < 0.01

Data are mean with standard deviation or n with percentage in brackets. Groups marked with different letters (a, b, c, d) are significantly different 
from each other by a Tukey-Kramer pairwise comparison (P < 0.05). Groups marked with the same letters are not significantly different from each 
other. WC: waist circumference; FBG: fasting blood glucose; PA: physical activity; HOMA-IR: homeostasis model assessment of insulin resistance; 
CRP: C-reactive protein.
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and women.

Discussion

The present study assessed the association between appendicu-
lar and trunk body composition and FBG levels, across a wide 
spectrum from NGT to T2DM in North American middle-aged 
men and women studied separately. After adjustment for age, 
BMI, ethnicity, smoking, alcohol and PA, our results show: 1) 
no change in appendicular LM and muscle function with the 
degree of glucose impairment, in both genders; 2) a significant 
increase in trunk FM with FBG in both genders, associated 
with a significant increase in trunk LM in women; 3) reduced 
total and trunk LM/FM ratios with FBG (significant in men 
but not significant in women); and 4) a significant increase in 
trunk/appendicular FM ratio with FBG in both genders (higher 
trunk FM increase compared with appendicular FM).

Overall, the present data suggest that hyperglycemia is 
not responsible for significant appendicular muscle modifica-
tions (neither mass nor function) in patients with pre-diabetes 
or T2DM. This result is consistent with a recent prospective 
11-year follow-up study conducted in older adults (between 

70 and 79 years old), which also missed to find association be-
tween the incidence of T2DM and muscle mass and strength, 
with adjusted models [21]. In the same study, unadjusted mod-
els indicate that total LM, thigh muscle areas and strength 
measures were associated with higher risk of T2DM, which 
was explained by the fact that LM is often associated with 
more body FM [21]. Furthermore, another recent study dem-
onstrated that HbA1c, a marker of chronic hyperglycemia, is 
not related to the decreased skeletal LM and that the decrease 
in muscle strength may be due to other factors distinct from 
hyperglycemia [22]. These results are however not in line with 
some other previous ones suggesting that T2DM is associated 
with decreased muscle mass and muscle performances [6-9, 
23, 24]. One of the strengths of the present study relies in the 
median age of 65 years, which is 10 years younger on average 
than subjects considered in many of these studies [6, 8, 9, 24]. 
Consequently, although we acknowledge that there is a physi-
ological evidence that IR can alter muscle protein synthesis, 
there is a discrepancy concerning the link between glycemic 
status and clinical loss of muscle mass and function.

Another important result of the present study is the in-
crease in trunk LM with FBG, which has previously been re-
ported [7]. Trunk LM primarily represents visceral mass (i.e., 

Table 3.  Fat Mass and Lean Mass Distribution for Each Group, Non-Adjusted for Covariates

NGT Low IFG High IFG T2DM
Men
  Appendicular LM (kg) 24.6 ± 4.4a 24.4 ± 4.4a 24.4 ± 5.1a 24.6 ± 5.0a

  Appendicular FM (kg) 10.3 ± 3.5b 10.6 ± 3.6a,b 11.3 ± 4.0a 11.3 ± 3.9a

  Trunk LM (kg) 27.9 ± 4.4b 28.3 ± 4.3a,b 28.7 ± 5.1a,b 29.2 ± 4.9a

  Trunk FM (kg) 13.3 ± 5.1b 14.1 ± 5.2b 15.7 ± 6.0a 16.1 ± 5.5a

  Total LM (kg) 55.9 ± 8.8a 56.1 ± 8.8a 56.6 ± 10.3a 57.3 ± 9.8a

  Total FM (kg) 24.8 ± 8.4b 25.9 ± 8.6b 28.2 ± 9.9a 28.6 ± 9.1a

  Trunk/appendicular FM 1.3 ± 0.3b 1.3 ± 0.2b 1.4 ± 0.3a 1.4 ± 0.3a

  Appendicular LM/FM 2.6 ± 0.7a 2.5 ± 0.6a,b 2.3 ± 0.6b 2.3 ± 0.6b

  Trunk LM/FM 2.4 ± 0.9a 2.2 ± 0.7b 2.0 ± 0.8b 2.0 ± 0.6c

  Total LM/FM 2.4 ± 0.7a 2.3 ± 0.6a,b 2.2 ± 0.6b 2.1 ± 0.5b

Women
  Appendicular LM (kg) 16.6 ± 3.6b 17.0 ± 3.7a 17.22 ± 3.9a 17.6 ± 4.4a

  Appendicular FM (kg) 14.9 ± 5.4b 16.0 ± 5.6a 16.20 ± 5.8a 15.7 ± 6.2a,b

  Trunk LM (kg) 20.3 ± 3.3b 21.1 ± 3.5a 21.20 ± 3.6a 21.8 ± 3.6a

  Trunk FM (kg) 14.7 ± 5.7b 16.5 ± 5.9a 17.13 ± 5.6a 17.3 ± 5.6a

  Total LM (kg) 39.7 ± 6.8b 41.0 ± 7.3a 41.29 ± 7.6a 42.4 ± 8.0a

  Total FM (kg) 30.7 ± 10.6b 33.6 ± 11.1a 34.78 ± 11.0a 34.1 ± 11.2a

  Trunk/appendicular FM 1.0 ± 0.2c 1.0 ± 0.2b 1.09 ± 0.2a,b 1.1 ± 0.3a

  Appendicular LM/FM 1.2 ± 0.3a 1.1 ± 0.3b 1.14 ± 0.3a,b 1.2± 0.3a

  Trunk LM/FM 1.5 ± 0.6a 1.4 ± 0.4b 1.33 ± 0.4b 1.3 ± 0.3b

  Total LM/FM 1.4 ± 0.4a 1.3 ± 0.3b 1.27 ± 0.3b 1.3 ± 0.3a,b

Data are mean with standard deviation, non-adjusted for covariates. Groups marked with different letters (a, b, c) are significantly different from each 
other by a Tukey-Kramer pairwise comparison (P < 0.05). Groups marked with the same letters are not significantly different from each other. LM: 
lean mass; FM: fat mass.
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kidneys, liver, pancreas and intestine). Early pancreatic (islet 
cells) and renal adaptive hypertrophy (proximal tubular and 
glomerular cells) are now well established in T2DM (based 
on both animal and human experiments) [25-28]. Chronic hy-
perglycemia is also associated with increased small intestinal 
enterocyte mass, supporting an important role of the small in-
testine in gluconeogenesis and the physiopathology of T2DM, 
as kidney and liver [29-31]. Further human studies using to-
modensitometry measures are today necessary to identify the 
origin and the role of this increased trunk LM, which seems to 
occur particularly early in women.

As the trunk LM/FM ratio decreases in IFG compared to 
NGT groups, the present study demonstrates that the increase 
in trunk FM is more important than the increase in trunk LM. 
This modification in trunk composition begins in a pre-diabe-
tes stage and may occur through IR, as visceral adiposity is 
positively associated with IFG and newly diagnosed T2DM 
[32]. Indeed, in the present study, IR was observed in both men 
and women of the IFG groups, with a significant increase in 
HOMA-IR from NBG subjects to subjects with T2DM. Aging 
and low-grade systemic inflammation (CRPus) that increase 
with FBG, are well-known factors associated with decreased 
muscle protein anabolism [33, 34]. In the present study, trunk/
appendicular FM ratio significantly increases with FBG, in 

other words, trunk FM increases more than appendicular FM. 
These results are consistent with previously published ones 
showing an independent association between glucose levels 
[35] and cardiovascular risks [36] with both higher trunk FM 
and lower appendicular FM.

The observed decreased total LM/FM ratio may advertise 
for ulterior functional consequences of T2DM, particularly 
given the stagnation of appendicular LM during the deterio-
ration of glucose homeostasis [8, 9]. Moreover, although this 
was not significant in the present study, we observed an in-
creasing time to complete the 20 feet walk with FBG. Indeed, 
it is well established that velocity is an important predictor of 
disability and mortality [20]. It has also previously been well 
demonstrated that skeletal muscle strength is an independ-
ent predictor of morbi-mortality [37], regardless of whether 
this loss is rapid or occurs over several years [38-40]. Given 
that trunk and total FM increase with FBG without increased 
appendicular LM, potential later functional impairments and 
cardiovascular diseases justify the introduction of preventive 
strategies [41], including nutrition counseling and exercise 
training, to maintain total muscle mass and decrease fat mass, 
prior to the onset of T2DM.

We acknowledge that this study has several limitations. 
First, as with any cross-sectional study, our data demonstrate 

Figure 1. Lean mass and fat mass distribution adjusted for covariates (age, height, weight, ethnicity, physical activity, smoking 
and alcohol consumption) for men. * means that groups are significantly different from each other by a Tukey-Kramer pairwise 
comparison (P < 0.05).
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associations but cannot prove direct effect and causal rela-
tionships. Second, the effects of other modifiers of body com-
position, such as hormonal status in women (premenopausal 
vs. postmenopausal), other chronic diseases associated with 
T2DM and nutritional status were not considered and may ex-
plain part of the observed results and the difference between 
men and women. However, in view of the mean age of our 
women sample, the majority were likely post-menopausal 
women. Further studies should investigate the role of gender 
on body composition because gender-related metabolic chang-
es have previously been described between men and women 
[42]. Finally, as DXA measures are not able to discriminate 
all tissue compartments, in particular intra-abdominal versus 
subcutaneous tissue, coming studies may use computed to-
mography and magnetic resonance spectroscopy to understand 
the real metabolic impact of such body composition changes.

Using a large sample size (3,888 middle-aged participants) 
and based on objective measurements for body composition 
(DXA scans), the present study demonstrates that appendicular 
LM is maintained while trunk and total FM increase in subjects 
with pre-diabetes compared with NGT. Further studies are 
needed to question the effects of PA on the evolution of trunk 
LM and on trunk LM/FM ratio, in particular as soon as the pre-
diabetic state begins, in order to counteract the development of 

progressive metabolic disorders and functional impairments, 
by combining nutritional and physical interventions.
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