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Abstract

Cirrhosis represents the final stage of chronic liver damage, which can 
be due to different factors such as alcohol, metabolic syndrome with 
liver steatosis, autoimmune diseases, drugs, toxins, and viral infec-
tion, among others. Nowadays, cirrhosis is an important health prob-
lem and it is an increasing cause of morbidity and mortality, being the 
14th most common cause of death worldwide. The physiopathologi-
cal pathways that lead to fibrosis and finally cirrhosis partly depend 
on the etiology. Nevertheless, some common features are shared in 
this complex mechanism. Recently, it has been demonstrated that cir-
rhosis is a dynamic process that can be altered in order to delay or 
revert fibrosis. In addition, when cirrhosis has been established, insu-
lin-like growth factor-1 (IGF-1) deficiency or reduced availability is 
a common condition, independently of the etiology of chronic liver 
damage that leads to cirrhosis. IGF-1 deprivation seriously contrib-
utes to the progressive malnutrition of cirrhotic patient, increasing the 
vulnerability of the liver to establish an inflammatory and oxidative 
microenvironment with mitochondrial dysfunction. In this context, 
IGF-1 deficiency in cirrhotic patients can justify some of the com-
mon characteristics of these individuals. Several studies in animals 
and humans have been done in order to test the replacement of IGF-1 
as a possible therapeutic option, with promising results.
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Introduction

Cirrhosis is the result of chronic liver disease. It represents the 

final stage of a wide number of chronic liver conditions, whose 
common effect is necroinflammation, fibrosis and regenera-
tion nodules that modify the normal liver structure reducing 
its functional mass and altering the vascular liver architecture 
[1-3]. Fibrosis progresses at variable rates depending on the 
cause of liver disease, environmental and host factors [4-6]. 
However, all those structural liver changes lead to impaired 
hepatocyte function (hepatocellular insufficiency) and an in-
creased intrahepatic pressure (portal hypertension) leading to 
all the clinical manifestations in cirrhosis [7].

The transition from chronic liver disease to cirrhosis in-
volves inflammation, and activation of hepatic stellate cells 
(HSCs) leading to fibrogenesis - angiogenesis and parenchy-
mal lesions - partly due to vascular occlusion (Fig. 1) [8]. These 
changes produce hepatic microvascular rearrangement, such 
as sinusoidal remodeling, formation of intrahepatic shunts, and 
hepatic endothelial dysfunction [9]. The endothelial dysfunc-
tion alters the normal release of vasodilators, most importantly 
nitric oxide. In addition, there is an increased production of 
vasoconstrictors [10]. All these changes, in combination with 
structural disturbances generate increased hepatic resistance to 
portal blood flow, leading to an elevated portal pressure, with 
its clinical consequences.

Furthermore, recently our group has described that the 
mere insulin-like growth factor-1 (IGF-1) partial deficiency, in 
an animal model with such deficiency, is associated with rele-
vant alterations of hepatic architecture and expression of genes 
involved in cytoskeleton, hepatocyte polarity, cell junction and 
extracellular matrix (ECM) proteins [11]. These results sug-
gest a novel approach to overcome the physiopathology in the 
onset of liver damage, IGF-1 availability, IGF-1 receptor ex-
pression after injury and cirrhosis development, claiming fur-
ther investigation. To date, such results have not been studied 
in humans.

Cirrhosis is a dynamic process that has to be monitored 
frequently, in order to avoid progression and/or reverse fibrosis 
[12, 13]. It can remain in a compensated state for several years, 
but when progression persues to advanced stages, complica-
tions may appear leading to a poor quality of life with higher 
morbidity and mortality. In advanced stages, the most common 
complications include coagulopathy and jaundice, gastrointes-
tinal bleeding from esophageal varices, ascites, hepatorenal 
syndrome, spontaneous bacterial peritonitis, encephalopathy, 
hipogonadism, and malnutrition [14, 15].

Nowadays, when treating cirrhotic patients, the aim is to 
avoid or delay progression to a “decompensated” stage, where 
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mortality rises up to 85% over 5 years, and to avoid liver 
transplantation [7]. Nevertheless, drug therapies can partially 
prevent or control some complications, but none of them can 
significantly increase survival nor modify the natural clinical 
course of the disease, except for some etiologic specific thera-
pies.

For this reason, new therapies have been tested in order to 
modify the natural history of cirrhosis, improving hepatocel-
lular function and reducing portal pressure. In this context, it 
seems necessary to improve our knowledge in the early onset 
of liver disease as well as its transition to cirrhosis, in order to 
find different therapeutic alternatives. This approach will be 
reviewed in the following lines.

Epidemiology

Cirrhosis is an increasing cause of morbidity and mortality, 
being the 14th most common cause of death worldwide [7]. Its 
prevalence is difficult to assess because the initial stages of the 
disease are asymptomatic, thus remaining undiagnosed, and is 
probably higher than reported.

In a recent epidemiologic study of cirrhosis, global liver 
cirrhosis deaths represented more than one million in 2010, or 
1.95% of the global total deaths. On average, there were twice 
as much male deaths compared to women [16].

Furthermore, most Western European countries have im-

proved its cirrhosis mortality, with the exception of UK, Ire-
land and Finland, where cirrhosis mortality rates have been 
increasing since 1980 [16]. In Latin America, mortality rates 
vary among different countries. Mexico has remained the 
country with the highest cirrhosis mortality rate in the region 
(Latin America), at 38.3 (30.7 - 47.5) per 100,000, and in 2010, 
it was the fourth leading cause of death, accounting for 18% 
of deaths in males aged 40 - 49 years [16]. Concerning Central 
Asia, the mortality rates have increased since 1990s until 2000, 
but in the last decade, the mortality rate has decreased or sta-
bilized in these countries. Finally, in sub-Saharan Africa, cir-
rhosis deaths have been doubled between 1980 and 2010 [16].

Alcoholic liver disease and hepatitis C are the main caus-
es in most developed countries, while hepatitis B is the most 
common cause in most parts of Asia and sub-Saharan Africa 
(Table 1) [3, 16].

Moreover, it is well known that metabolic syndrome 
(MetS) is increasing worldwide [17], in part related to the oc-
cidentalization of lifestyle habits [18, 19]. Non-alcoholic liver 
disease is also increasing in developed countries [20, 21]. It is 
important to take this into account, as MetS represents a major 
cause of non-alcoholic steatohepatitis (NASH) and non-alco-
holic fatty liver disease (NAFLD). Of interest, accumulated 
evidence relates IGF-1 deficiency with MetS establishment 
and steatohepatitis, since the mere IGF-1 deficiency alters he-
patic expression of gene involved in glucose and lipid metabo-
lism [22].

Figure 1. Transition from normal to liver cirrhosis. 
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Growth Hormone (GH)-IGF-1 Axis, IGF-1 Defi-
ciency, Altered Lipid Metabolism and Oxidative 
Damage

IGF-1 is a 70-aminoacidic anabolic hormone with several en-
docrine, paracrine and autocrine effects [23]. It is well known 
that IGF-1 is mainly produced by the liver (accounting for 
75% of circulating IGF-1), but almost every tissue is able to 
secrete IGF-1 for autocrine/paracrine purposes [24-27].

Pituitary GH and liver derived IGF-1 establish a negative 
feedback mechanism (Fig. 2) [28-30].

Circulating IGF-1 can be found in its free form or mainly 
bound to carrier proteins (IGF binding proteins (IGFBPs)). Be-
cause IGF-1 has a wide range of physiological roles, it must be 
strictly controlled, where IGFBPs play an important role. Until 
now, there have been identified at least six high affinity IG-
FBPs. IGFBP-3, which binds 90% of circulating IGF-1, forms 
a ternary complex consisting of one molecule of IGF-1, one 
molecule of IGFBP3 and one molecule of the so-called acid 
labile subunit [31]. GH mainly regulates the IGFBP-3 [32], 
while IGFBP-1 is mostly regulated by insulin and IGF-1 [33].

In summary, the common functions of IGFBPs are: 1) 
acting as carrier proteins for circulating IGF-1 and controller 
of its flow from the vascular space to tissues; 2) increasing 
IGF-1 half-life and regulating its metabolic clearance [34]; 3) 

modulating the interaction between IGF-1 and its receptor, and 
thus indirectly controlling IGF-1 biological activity [29]; 4) 
modulating IGF-1 in target tissues, inhibiting or activating its 
specific actions: cell proliferation, differentiation, survival and 
migration [28, 35-37]; and 5) providing a specific localization 
pool of IGF-1, because IGFBPs can associate with cell mem-
branes or ECM [38]. Additionally, some IGFBPs may have 
some biological effects outside IGF-1 signaling pathways, 
such as apoptosis induction, and proliferation/inhibition in 
some tumors [37].

Additionally, other nine binding proteins arose as IGFBP-
related proteins (IGFBP-rPs), with structural and functional 
similarities to the IGFBPs but with lesser affinity [34]. None-
theless, the physiological role of these proteins in the IGF sys-
tem is not completely defined, but their structural relationship 
with IGFBPs allows some of these proteins to bind IGF-1, con-
trolling its activity [39, 40].

IGF-1 actions are mediated by its binding to its putative 
receptor, IGF-1R, a tyrosine kinase. Nonetheless, IGF-1 can 
also bind to the insulin receptor (with lower affinity), regulat-
ing some metabolic functions. Type 1 IGF receptor is a het-
erotetramer composed of two extracellular α subunits and two 
transmembrane β subunits. The extracellular α subunits are 
cysteine-rich regions that confer specificity to ligands, while β 
subunits have an intracellular part that contains a tyrosine ki-
nase domain, which constitutes the signal transduction mech-

Table 1.  Population Fractions for Liver Cirrhosis Risk Factors by Region in 2010

Region name Alcohol Hepatitis B Hepatitis C Other*
Asia Pacific, high income 0.24 0.31 0.25 0.20
Asia, Central 0.16 0.36 0.18 0.29
Asia, East 0.18 0.39 0.18 0.26
Asia, South and Southeast 0.40 0.58 0.44 0.59
Australia 0.31 0.30 0.18 0.21
Caribbean 0.25 0.14 0.25 0.36
Europe, Central 0.27 0.15 0.22 0.36
Europe, Eastern 0.30 0.13 0.23 0.34
Europe, Western 0.33 0.11 0.30 0.27
Latin America, Andean 0.23 0.21 0.21 0.36
Latin America, Central 0.29 0.08 0.26 0.37
Latin America, Southern 0.31 0.12 0.28 0.29
Latin America, Tropical 0.31 0.06 0.27 0.37
North America, high income 0.33 0.06 0.29 0.32
North Africa, Middle East 0.14 0.27 0.24 0.36
Sub-Saharan Africa, Central 0.15 0.37 0.20 0.27
Sub-Saharan Africa, East 0.16 0.34 0.20 0.30
Sub-Saharan Africa, Southern 0.19 0.37 0.18 0.27
Sub-Saharan Africa, West 0.15 0.38 0.18 0.28
Oceania 0.13 0.44 0.17 0.26

*Not attributable to chronic alcohol intake, and tested negative to anti-VHC antibodies and HbsAg. Adapted from 
Mokdad et al, BMC Medicine 2014;12:145.
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anism [41]. Tyrosine phosphorylation activates a signaling 
cascade [42]. IGF-1 has paracrine, endocrine, and autocrine 
effects on almost every organ, owing this fact to the ubiquitous 
IGF-1R expression in the organism [30].

The relevance of IGF-1, both in embryological and post-
natal states, has been known for years, and its important role in 
multiple organs has gained recognition more recently. Its wide 
activities are partly summarized in Figure 3 [22, 43-68].

Recent data also support that IGF-1 deficiency is related 
to insulin resistance, impaired lipid metabolism, oxidative 
damage and neuro-hormonal axis deregulation [69-71]. Like-
wise, some studies have also suggested an inverse relationship 
between IGF-1 circulating levels and the incidence of MetS, 
with liver steatosis, insulin resistance, hyperlipidemia and ab-
dominal visceral obesity [61, 72-75]. All these results suggest 
a possible major role of IGF-1 in the development of MetS as 
well as NASH and NAFLD, which constitute, in many cases, 
the first stage of metabolic liver damage.

Physiopathological Pathways Since Early Liver 
Damage to Decompensated Cirrhosis: Relation-
ship With IGF-1 Deficiency

The beginning of fibrosis is usually insidious and the progres-

sion to cirrhosis can occur in an interval of 15 - 20 years, de-
pending upon different factors - etiology, genetic and environ-
mental aspects [76]. Even though each etiology has its specific 
pathological feature, a general common pathway can be de-
scribed from early liver damage all the way to cirrhosis. He-
patic fibrosis is the result of the liver’s response to a repeated 
injury that can be due to viral infection, MetS with insulin re-
sistance, autoimmune disease, toxins, or alcohol [77]. After an 
acute injury, the hepatocytes become damaged and an inflam-
matory response is triggered following HSCs activation, lead-
ing to a controlled and coordinated deposition of EMC with 
parenchymal cells regeneration and replacement of necrotic 
cells. If the injury persists, this regeneration process fails, and 
ECM replaces the normal liver parenchyma, through the pro-
liferation and differentiation of HSC to myofibroblasts. Those 
myofibroblasts secrete different profibrogenic cytokines that 
finally lead to the synthesis and deposition of fibrillar collagen 
that forms the ECM. Sinusoidal endothelial cells loose their 
fenestrations and deposition of ECM increases the resistance 
to hepatic blood flow. A positive feedback is then established, 
in which inflammatory and profibrogenic cells stimulate each 
other, leading to fibrosis, with accumulation of ECM because 
of the increased synthesis and decreased degradation, as well 
as the increasing resistance to hepatic blood flow [76].

A common feature that has been described occurring 
from the early stages of liver damage, central for NAFLD and 

Figure 2. GH/IGF-1 axis and its several actions in diverse organs. 
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NASH, is IGF-1 deficiency [78-80]. There are two important 
aspects of this issue. 1) In both cases (NAFLD and NASH), 
the insulin resistance plays a major role in the development of 
liver damage, even though different factors are also implicated 
(obesity, type 2 diabetes, MetS, and hyperlipidemia, among 
others) [78]. It is well known that IGF-1 improves insulin sen-
sitivity in vivo, and also that the specific deletion of hepatic 
IGF-1 results in insulin resistance [81], showing that hepatic 
IGF-1 regulates systemic insulin sensitivity. 2) As previously 
mentioned, some recent studies suggest a relationship between 
IGF-1 deficiency and the risk of developing MetS [61, 82-84], 
which further would contribute to the appearance of NAFDL 
and/or NASH.

In conclusion, NAFDL and NASH could be a later mani-
festation of an IGF-1 deficiency condition, as this deficiency 
contributes to the presence of different risk factors that lead to 
the aforementioned diseases. Moreover, IGF-1 deficiency has 
been described in both entities, so it could represent a common 
pathway between MetS and hepatic steatosis [78] (Fig. 4).

Numerous different factors take place in this complicated 
mechanism that can either enhance or ameliorate the activated 
fibrogenic cascade. A complex interplay between different he-
patic cells takes place, leading to the release of reactive oxy-
gen species (ROS) together with fibrogenic and inflammatory 
mediators, among others. There is growing evidence for the 
contribution of different immune interactions, chemokines, 
adipokines, oxidative stress and neuroendocrine factors [76, 
77]. Table 2 resumes the inflammatory mediators that are in-
volved in the regulation of fibrogenesis in the liver [85]. These 
mediators function independently of IGF-1 levels.

The oxidative stress, mitochondrial dysfunction, and in-
flammatory cascade, also play an important role in the de-
velopment and persistence of liver damage of any etiology, 
leading to fibrosis [76, 77]. Nowadays, it is better understood 
that all these mechanisms interact with each other promoting 
fibrosis, and, should they persist activated, the damage will 
ensue, contributing to cirrhosis stablishment and progression. 
Nevertheless, the cessation of liver injury has been confirmed 
to delay and even revert fibrosis at some degree, although this 
may take several years [77]. In this sense, recent studies focus 
on the investigation of possible therapeutic targets that could 
act directly in each profibrogenic pathway, in order to stop this 
negative stimuli and hence delay or revert fibrosis. However, 
poor results have been obtained so far.

Despite this, some studies have shown that IGF-1 reduc-
es oxidative stress in the liver, and improves mitochondrial 
function [86, 87]. Also, it has been described that GH-defi-
cient rats present impaired mitochondrial morphology of the 
hepatocytes, which improves with IGF-1 administration [88]. 
As these factors are strongly implicated in the progression of 
liver damage, it can be a useful target for new therapeutic ap-
proaches. In our experience, mitochondria is one of the main 
intracellular targets of IGF-1, proved in several conditions of 
IGF-1 deficiency and restored by low doses of this hormone 
[87].

Moreover, as previously mentioned, it has been recently 
described that the mere IGF-1 partial deficiency in animals is 
associated with relevant alterations of the hepatic architecture, 
as well as an altered expression pattern of genes encoding cy-
toskeleton proteins, genes related to hepatocyte polarity, cell 

Figure 3. IGF-1 signaling cascade and its implications in metabolism. 
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junctions and ECM proteins, suggesting that IGF-1 deficiency 
can be strongly implicated since the early stages of liver dam-
age. Additionally, this partial deficiency induced an altered liv-
er expression of genes encoding IGF-1R and proteins involved 
in acute-phase and inflammation, resulting in hepatic oxida-
tive damage. Also, our group described that cirrhotic animals 
showed a significant reduction in IGF-1 circulating levels, that 
IGF-1 treatment restored to normal [89].

Considering all these data, it can be suggested that early 
liver damage and cirrhosis are IGF-1 deficiency conditions that 
can be improved with IGF-1 treatment, as the liver expresses 
IGF-1R under both conditions [11].

IGF-1 and GH in Cirrhosis

Liver cirrhosis association with IGF-1 was first described in 

the late 80s, when it was proposed as a good marker of hepa-
tocellular function. Since then, the idea of liver cirrhosis as a 
condition of IGF-1 deficiency has been consolidated over the 
last years.

As previously mentioned, decreased levels of free IGF-
1 are observed in patients with chronic liver disease (becom-
ing more severe as the disease progresses) [90-94], despite the 
normal or elevated GH secretion [91, 95]. This may be due to a 
decrease in GH receptors on the liver of these patients [96-98], 
and a progressive reduction of liver synthesis capability. Like-
wise, IGFBPs production is also modified in cirrhosis, with 
an increased level of IGFBP-1 and a decreased of IGFBP-3. 
These changes may play a special role in the bioavailability 
of IGF-1 in tissues [94, 99, 100], since IGFBP-3 carries up 
to 80-90% of circulating IGF-1 and maintains plasma concen-
trations, meanwhile IGFBP-1 sequesters IGF-1, impeding its 
usage (Fig. 5).

Figure 4. IGF-1 in the progression of metabolic syndrome to liver cirrhosis. 
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Table 2.  Inflammatory Mediators Implicated in Hepatic Fibrogenesis

Tipo Mediator Target cells and mechanisms of action Liver disease/model
Inflammatory  
cytokines

IL-1 Up-regulates TIMP-1 and down-regulates BAMBI in HSCs.
Promotes HSC survival.
Promotes lipid accumulation and cell death in hepatocytes  
during NASH and ALD.

Experimental fibrosis induced by BDL 
or TAA; experimental NASH by CDAA 
diet; experimental ALD model induced 
by Lieber-DeCarli and ethanol binge  
injection.

IL-33 Secreted from damaged hepatocytes, stimulating ILC2 to  
produce IL-13 that in turn activates HSC.

Human liver cirrhosis; experimental 
fibrosis induced by CCl4, TAA or 
Schistosoma mansonii infection.

TNF-α Induces apoptosis of the hepatocytes.
Up-regulates TIMP-1 and down-regulates BAMBI in HSCs.
Promotes HSC survival and proliferation.
Activates liver macrophages.

Experimental fibrosis induced by BDL; 
experimental NASH model induced by  
MCD diet.

IL-17 Stimulates KCs and HSC to produce IL-6, TNF-α, and TGF-β.
Activates NF-kB and STAT3 in KCs and HSCs.
HSCs activation through STAT3.

Hepatitis B, experimental fibrosis 
induced by CCl4 or BDL.

IL-20 Promotes activation, proliferation, and migration of HSCs.
Prevents hepatocyte injury.

HBV- and HCV-induced liver cirrhosis; 
experimental fibrosis induced by CCl4.

IL-22 Induces HSC senescence through STAT3-p53.
HSC senescence inhibits liver fibrosis.

HBV-, HCV- and alcohol-induced liver 
cirrhosis; experimental fibrosis induced  
by CCL4.

IFN-γ Suppresses HSC proliferation and activation.
Activates NK cells to promote HSC killing.

Experimental fibrosis induced CCl4.

Chemokines CCl2  
(MCP-1)

Macrophage and HSC recruitment; HSC activation. Experimental fibrosis induced by CCl4 
or BDL; experimental NASH model 
induced by MCD or CDAA diet.

CCL5 Macrophage and HSC recruitment; HSC activation. Experimental fibrosis induced by CCl4.
CXCL9 Suppresses HSC activation.

Inhibits angiogenesis that inhibits liver fibrosis.
Experimental fibrosis induced by CCl4.

CXCL10 Promotes hepatocyte death and HSC activation.
Inhibits NK cell-mediated HSC inactivation.

Experimental fibrosis induced by CCl4.

CX3CL1 Prolongs KC survival.
Promotes anti-inflammatory property in KCs.

Experimental fibrosis induced 
by CCl4 or BDL.

Gut microbiota  
axis/TLR pathway

TLR4 Directly stimulates HSC to down-regulate BAMBI and produce  
chemokines in BDL and CCl4-induced liver fibrosis.
Stimulates KCs to produce proinflammatory and fibrogenic 
cytokines that activate HSCs in ALD and NASH.
Stimulates LSECs to induce angiogenesis that promotes HSC  
activation and fibrosis.

Experimental fibrosis induced by CCl4 
or BDL; experimental NASH model 
induced by MCD or CDAA diet; 
experimental ALD model induced by 
Lieber-DeCarli or Tsukamoto-French  
model.

TLR2 Stimulates KCs to produce cytokines that activate HSCs in  
NASH.
Stimulates macrophages in intestine, which promote bacterial  
translocation.

Experimental fibrosis induced by CCl4 
or BDL; experimental NASH model  
induced by CDAA diet.

TLR9 Stimulates KCs to produce cytokines that activate HSCs in  
NASH.
Stimulates HSCs by host DNA released from apoptotic  
Hepatocytes.

Experimental NASH model induced by 
CDAA diet; experimental fibrosis  
induced by CCl4 or BDL.

TLR3 Stimulates NK cells to produce IFN-c that induces antifibrotic  
effect by killing HSCs.

Experimental fibrosis induced by CCl4  
or Lieber-DeCarli plus CCl4.

TLR7 Stimulates DCs to produce type I IFN that inhibits liver fibrosis. Experimental fibrosis induced by CCl4  
or BDL.

Adapted from Seki et al, Hepatology, 2015.
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On the other hand, the hepatocytes express few IGF-1 re-
ceptors in healthy subjects, so it has been thought that IGF-1 
may not affect hepatocyte function directly. However, IGF-1R 
overexpression in hepatocytes has been described in chronic 
hepatitis C, chronic hepatitis B, and liver cirrhosis [101-103], 
when compared with normal livers, suggesting the potential 
role of IGF-1 in the liver damage under these conditions [104]. 
Additionally, recent results of an experimental model of IGF-
1 partial deficiency induced the expression of IGF-1R in the 
liver, even though no liver injury is present. So, IGF-1 seems 
to play an important role in liver homeostasis.

Some other experimental models have shown the physi-
ological importance of GH signaling in the liver. Liver-specific 
deletion of GH receptor in mice (GHRLD) resulted in a reduc-
tion of > 90% of serum IGF-1 levels, contributing to those pre-
viously discussed effects [105]. Furthermore, these mice also 
showed insulin resistance, glucose intolerance, increased fatty 
acids, decreased triglyceride efflux, severe steatosis, as well 
as impaired liver regeneration, which proposes that GH may 
regulate hepatocyte proliferation [65, 106, 107].

Under this scenario, several characteristics of cirrhotic 
patients can be partially justified by IGF-1 deficiency, such 
as malnutrition. Glucose production through liver gluconeo-
genesis is increased in these patients, as well as proteolysis in 
the muscle. Likewise, they exhibit an increase in insulin and 
glucose levels partly secondary to insulin resistance, but the 
exact mechanism is still not well understood. Several causes 
have been proposed so far, but none of them have been yet 
confirmed [29, 99, 108]. Additionally, low IGF-1 levels con-

tribute to the loss of bone mass seen in cirrhotic patients [109].

Results of IGF-1 Therapy

Results of low doses of recombinant human IGF-1 
(rhIGF-1) administration in experimental models of cir-
rhosis

Following the consolidation of cirrhosis as a condition of IGF-
1 deficiency, the replacement therapy with this hormone has 
been approached in multiple studies in order to test it, given its 
possible role in the genesis of some cirrhosis complications. 
Some of theses studies results are discussed below.

Experimental CCl4-induced cirrhosis animals have been 
treated with rhIGF-1 (20 μg/kg/day for 14 - 21 days) versus 
placebo, showing the following results: 1) Increased food in-
gestion, nitrogen balance and the uptake of dietary nitrogen 
by muscle, leading to increased muscle mass [110, 111]. 2) In 
vivo and in vitro studies showed recovery of cirrhosis-associ-
ated micro-villi atrophy [111-113], as well as carbohydrates 
and aminoacids intestinal absorption, but no lipid absorption 
recovery [49, 70, 112, 114, 115]. The intestinal absorption im-
proves as morphologic changes do [115]. 3) Increase of bone 
density and reduced bone resorption, improving osteopenia, 
both in compensated and ascitic cirrhosis [116]. 4) Rever-
sion of testicular atrophy as well as histological alteration and 
improvement of hypofisis-testicular axis. Hemato-testicular 

Figure 5. IGF-1 in liver cirrhosis establishment. 
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barrier is altered from early stages of liver cirrhosis and IGF-
1 therapy was able to recover its integrity [117]. Moreover, 
it produces restoration of the somatoninergic tone, which is 
reduced in cirrhosis and facilitates the inhibition of GH se-
cretion [118]. 5) Reduced portal pressure, endotoxemia, and 
bacterial translocation [119], possibly due to the improvement 
in fibrosis (decreased collagen in liver tissue and histologi-
cal fibrosis score) [69]. Furthermore, a decrease in collagen 
synthesis, reducing prolyl-hydroxylase activity and collagen 
mRNA expression has been also described [50]. Additionally, 
an improvement in liver function, an increase in albumin and 
coagulation factor levels, and a reduction in bilirubin levels 
were found [69]. Some of these changes have been also dem-
onstrated in cirrhosis induced by common bile duct ligation. 
6) Regularization of mitochondrial function in the liver [69, 
86, 87, 120] and ATPase function, as well as decrease in oxi-
dative stress parameters and free radicals [69]. In particular, 
a normalization of mitochondrial membrane potential, an in-
crease of ATP production, reducing the intramitochondrial free 
radical production, as well as a decrease caspase activation and 
apoptosis have been described [87].

In summary, IGF-1 replacement therapy shows several 
hepatoprotective, antifibrogenic, anti-inflammatory, and anti-
oxidant effects.

Other changes show decrease in lipid peroxidation prod-
ucts and free radicals, decreasing the collagen gene expression 
in myofibroblasts [121] and prolyl-hydroxylase activity [122], 
as well as stellate cells activation [123]. Furthermore, the ex-
pression of several genes that were altered in CCl4-induced 
cirrhosis, was normalized after rhIGF-1 replacement therapy 
[124]. Additionally, the regenerating activity increases with 
the proliferation of cell nuclear antigen expression, the res-
toration of GH receptor gene expression, and the stimulation 
of hepatocyte growth factor production (a potent mitogen and 
liver protecting agent), as well as the down-regulation of trans-
forming growth factor-β1 (TGF-β1) [125].

Results of IGF-1 gene transfer in experimental models

Since the administration of rhIGF-1 is extremely expensive, it 

has been proposed that the use of viral vectors encoding IGF-
1 can allow sustained expression of the transgene within the 
cirrhotic liver, helping in treating cirrhosis instead of rhIGF-1 
administration [126, 127]. Two studies have been done so far 
to evaluate this possibility, and Table 3 summarizes the dif-
ferent findings [128]. In the first model, a recombinant sim-
ian virus 40 (rSV40) vector encoding for IGF-1 was used to 
evaluate if the sustained expression of IGF-1 in the liver can 
protect it against developing cirrhosis after a chronic exposure 
to CCl4. It was found that rSV40 encoding IGF-1 reduced liver 
cells damage - showing a decrease in serum transaminases and 
bilirubin levels - fibrogenesis, and ascites formation as well as 
improved hypogonadism, showing cytoprotective and antifi-
brogenic effects [126].

A second study showed the effects of the administration of 
rSV40 that encodes for IGF-1 in rats with established cirrhosis. 
The results showed that this therapy activated different mecha-
nisms for fibrolysis, down-regulated profibrogenic factors, and 
induced cytoprotective molecules that lead to an improvement 
of hepatocellular function and reduced fibrosis [127].

Results of rhIGF-1 administration in cirrhotic patients

In human cirrhotic patients, one clinical trial has been conduct-
ed, being a pilot, double-blind, randomized, placebo-controlled 
study in order to evaluate the effects of rhIGF-1 administration 
in patients with primary biliary cirrhosis or alcohol-related 
cirrhosis [129]. During 4 months, patients received rhIGF-1 
in the following manner: initially 20 μg/kg/day, increasing 
the dose each week to a maximum dose of 50 μg/kg/day or 
100 μg/kg/day for 4 weeks. Even with the limitations of the 
study, there were three main findings in the patients receiving 
rhIGF-1: 1) an increase in serum albumin levels, which has 
never been achieved by any other treatment, 2) a trend towards 
increased resting energy expenditure and total IGF-1, which 
can be due to an increased amount of available ATP, because 
of an improvement of mitochondrial function [87], and 3) an 
augmented IGF-1/IGFBP3 ratio levels. In this study, IGF-1 
was well tolerated and more effective in patients with less nu-
tritional impairment, higher hormone bioavailability rates, and 

Table 3.  Factors Up- and Down-Regulated After IGF-1 Gene Transfer in Cirrotic Patients (Modified From Bonefeld and Moller, Liver 
Int. 2011)

Up-regulated hepatoprotective factors Down-regulated profibrogenic factors

HGF Hepatocyte growth factor Activated HSC Activated hepatic stellate cells

MMPs Matrix metalloproteases αSMA α-smooth muscle actin

HNF4α Hepatocyte nuclear factor 4α TGF-β Transforming growth factor-β

STAT3a Signal transducer and activator of transcription 3a STAT3b Signal transducer and activator of transcription 3a

Egfr Epidermal growth factor receptor TIM1 and TIM2 Tissue inhibitors of MMPs

Hnf6 Hepatocyte nuclear factor 6 PDGF Platelet-derived growth factor

Prlr Prolactin receptor CTGF Connective tissue growth factor

Lifr Leukemia inhibitory factor receptor WT-1 Wilm’s tumor 1

Same factors could be involved in the positive clinical outcome seen when supplementing with rhIGF-1.
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those with alcoholic cirrhosis.

Other Strategies for Cirrhosis Treatment

The progression in understanding the pathophysiological 
mechanisms of cirrhosis has generated new investigations 
about possible therapeutic drugs that can prevent, delay or re-
verse fibrosis. Nowadays, the approach to liver fibrosis can be 
divided into two steps: primary therapy, in order to prevent, 
delay or even revert fibrosis, comprising in treating the un-
derlying cause (hepatitis B, C, autoimmune hepatitis, alcohol 
consumption, etc.) [130-134]; secondary therapy, in order to 
revert fibrosis developing intrinsic antifibrotic drugs that target 
the fibrogenesis mechanism.

In this scenario, many drugs have been tested so far in 
experimental animals, but clinical tests of some of them are 
still pending [76, 135-137]. Moreover, some drugs have shown 
convincing antifibrotic activity on HSCs in vitro, as well as in 
animal models of liver fibrosis and even patients in vivo [76, 
135-137]. Nevertheless, their long-term safety in cirrhotic pa-
tients has not been proven to date.

On the other hand, the reconstitution of functional paren-
chymal mass in conjunction with fibrosis treatment can lead 
to a better prognosis [138-140]. In this aspect, hepatocyte 
transplantation as well as infusion of hepatocyte growth fac-
tor, has shown to improve liver function [141, 142]. Moreover, 
the transplantation of hepatocyte stem cells or progenitor cells 
promises a better future in the treatment of cirrhotic patients. 
However, until now, the efficiency of these approaches is still 
very low, needing further investigations in order to improve 
the techniques, so they can be applied to patients.

Conclusions and Future Perspective

Recently, our knowledge about cirrhosis development and 
evolution has increased. IGF-1 seems to play an important role 
in the development and progression of this condition, being 
a possible marker of the functional reserve of hepatocellular 
functional capacity [90, 143]. Furthermore, some studies have 
shown that IGF-1 levels are considered of prognostic value for 
these patients [143-145]. Additionally, recent studies are over-
coming concerns about the implication of IGF-1 deficiency 
since the early liver damage, even in the absence of liver in-
jury [11].

On the other hand, in the last years, a new therapeutic ap-
proach of cirrhosis has been developed, as it no longer con-
sidered an irreversible condition. Also, a real effort to delay 
fibrosis progression has been done, as there is a better under-
standing of the different mechanisms that contribute to this 
phenomenon. However, the translation of basic research into 
improved therapeutics for patients with cirrhosis is still lack-
ing.

Nonetheless, some studies have proved the benefits of 
IGF-1 treatment in experimental models of steatosis, fibrosis 
and even cirrhosis, as well as in one clinical trial with cirrhosis 
patients. Additionally, one study has demonstrated, in an ex-

perimental model, the efficacy of using IGF-1 in conjunction 
with interferon-alpha as a treatment for cirrhosis [89]. In this 
study, we observed an improvement in liver function biochem-
istry, hepatic lipid peroxidation and a dramatical reduction of 
fibrosis, inducing a histological improvement with a recovery 
of hepatic architecture [89].

In order to continue with the new focus of targeting fibro-
genesis pathways, to prevent or delay it, the investigation of 
IGF-1 as a possible therapeutic agent should seriously be taken 
into account. In the case of NAFLD and NASH, this therapeu-
tic approach reaches a relevant place, as new studies strongly 
associated these entities, as well as the MetS, with low levels 
of IGF-1, making this hormone a perfect candidate to be con-
sidered as a possible treatment.

Clinical trials to establish the feasible therapeutic doses 
of IGF-1 in fibrosis and cirrhosis, as well as its specific con-
tribution in each kind of cirrhosis etiology, could be a relevant 
research target in the next years.
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