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Abstract

The primary function of the lungs is gas exchange. Approximately 
400 million years ago, the Earth’s atmosphere gained enough oxy-
gen in the gas phase for the animals that emerged from the sea to 
breathe air. The first lungs were merely primitive air sacs with a few 
vessels in the walls that served as accessory organs of gas exchange 
to supplement the gills. Eons later, as animals grew accustomed to a 
solely terrestrial life, the lungs became highly compartmentalized to 
provide the vast air-blood surface necessary for O2 uptake and CO2 
elimination, and a respiratory control system was developed to regu-
late breathing in accordance with metabolic demands and other needs. 
With the evolution and phylogenetic development, lungs were tak-
ing a variety of other specialized functions to maintain homeostasis, 
which we will call the non-respiratory functions of the lung and that 
often, and by mistake, are believed to have little or no connection 
with the replacement gas. In this review, we focus on the metabolic 
functions of the lung, perhaps the least known, and mainly, in the lipid 
metabolism and blood-adult lung vascular endothelium interaction. 
When these functions are altered, respiratory disorders or diseases 
appear, which are discussed concisely, emphasizing how they impact 
the most important function of the lungs: external respiration.

Keywords: Metabolic functions; Lung; Lipid and pulmonary sur-
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Introduction

Respiratory function of the lung is critical and of immediate 
importance for the survival of organisms, and molecular oxy-
gen is vital for energy that is essential for life [1]. Relevant to 
this primary role, the physiological model of the lung consists 

of conducting airways to transport the gas in and out of the 
lungs and the alveolar membranes where gas exchange occurs 
by diffusion from the alveoli to capillaries. Within the lung, 
oxygen diffuses freely through the cells that form the alveolar 
septa to the pulmonary capillaries for eventual distribution by 
the systemic blood flow [2]. Due to the availability of O2 from 
the alveolar space, the alveolar cells do not rely on pulmonary 
perfusion for oxygen delivery. For this reason in the adult, O2 
consumption of the lungs only represents 0.5-4% of the total 
oxygen consumption [3].

The cells of the major conducting bronchi represent an ex-
ception to the generalization concerning the sources of oxygen 
for lung cell metabolism. While the bronchial epithelium ob-
tained the O2 diffusion from the lumen of the airway, oxygen 
consumed by the deep tissues of these pathways is delivered 
by the systemic circulation through the bronchial arteries [4].

Non-respiratory lung functions are many and varied. Ac-
tive roles include active defense mechanisms, heme fluency, 
lipid metabolism and biological interactions with plasma [5]. 
The last two are the subject of this review. The objective was to 
discuss the metabolic role of the lung and how it generates var-
ious disorders or pathologies that interfere with gas exchange.

Lipid Metabolism and Pulmonary Surfactant

Overview

The lung plays an important series of functions in connection 
with lipids such as de novo synthesis of fatty acids and oxida-
tion, lipid esterification, acid-ester bonds hydrolysis, hydroly-
sis of lipoproteins, synthesis of phosphatidylcholine, synthesis 
and secretion of prostaglandins and other eicosanoids from 
arachidonic acid precursors [6].

The surface tension of the air-tissue of the alveolar mem-
brane is because the molecules of liquid lining the alveoli 
generate forces of attraction between them. These forces are 
greater than those between the liquid and the alveolar air in the 
honeycombs structures, generating a centripetal pressure that 
tends to collapse the alveoli, particularly those having smaller 
[7]. The surfactant material is formed primarily by dipalmitoyl 
phosphatidylcholine and is amphipathic meaning that when it 
makes contact with the air-liquid interface, it directs his “hack-
bone” into the aqueous subphase and chains of hydrocarbons 
into the air. When this occurs, the surfactant material gener-
ates intermolecular repulsion forces opposing molecular forces 
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responsible for the fluid surface tension [7, 8]. Therefore, the 
basic function of surfactant will reduce the surface tension in 
the alveoli.

For the same surface tension, the alveoli with smaller radi-
us generate a centripetal pressure inside them that exceeds the 
one of those with bigger radius. Therefore, small alveoli empty 
into large alveoli. The surfactant reduces this phenomenon. A 
third mechanism is to keep alveoli dry. Because the surface 
tension tends to collapse the alveoli, also it tends to suck fluid 
into the alveolar space from the capillaries. By reducing the 
surface tension, the surfactant prevents transudation of fluid 
[9].

At about 24 weeks of gestation of the human fetus, respir-
atory epithelial cells initiate synthesis of phosphatidylcholine, 
phosphatidylglycerol and surfactant apoprotein, but really full 
production and function occurs later, between weeks 34 and 
36 [10]. The components of the surfactant are synthesized and 
assembled into organelles called lamellar bodies and are se-
creted into the fluid delimiting extracellular alveolar surface 
[6, 11].

Four distinct surfactant associated proteins have been 
identified: SP-A, SP-B, SP-C and SP-D; they are synthesized 
on polyribosomes and extensively modified in the endoplas-
mic reticulum and Golgi apparatus [12, 13].

Increased evidence supports the concept that proteins play 
a role as components of the innate immune system of host de-
fense [14, 15].

Resorption surfactant occurs through alveolar type II cells, 
involving endosomes, and then is transported to the lamellar 
bodies to be recycled. Macrophages also take some surfactant 
in the liquid phase (10-20% of the clearing). Much less amount 
is absorbed by the interstice or removed by air [16].

Neonatal respiratory distress syndrome (RDS)

RDS is caused by a deficiency of pulmonary surfactant in the 
lungs of newborns, more common in those born before 37 
weeks of gestation. In the United States (US), it is estimated 
that 20,000 - 30,000 RDSs occur in newborn infants each year 
[17]. There are hereditary rare cases, caused by mutations in 
the genes encoding the surfactant protein [18-23].

Due to the deficiency of the surfactant, great pressure 
would be required to open the alveoli. As this level of pressure 
cannot be generated, the surface tension collapses the alveoli 
and lung becomes diffusely atelectatic [7]. The presence of a 
disorder ventilation/perfusion and right-left shunt takes the in-
fant to hypoxemia and hypercapnia. The gases also show res-
piratory and metabolic acidosis that causes pulmonary vaso-
constriction and alters the epithelial and endothelial integrity, 
leading to exudation of proteinaceous material and formation 
of hyaline membrane [24, 25].

Arterial blood gases show hypercapnia, hypoxia and aci-
dosis. A newborn is affected by RDS if you have a PaO2 < 50 
mm Hg (< 6.6 kPa), central cyanosis in room air or require 
supplemental oxygen to maintain PaO2 > 50 mm Hg (> 6.6 
kPa) and typical radiographic abnormalities: the “reticulogran-
ular” texture of the lung opacities, decreased lung expansion, 
symmetrical generalized consolidation of variable severity, ef-

facement of normal pulmonary vessels, air bronchograms up 
to dense and ground-glass opacities [26, 27].

The treatment is based on surfactant, supplemental oxy-
gen and mechanical ventilation when necessary. The progno-
sis with treatment is excellent; mortality is < 10%. With only 
adequate ventilatory support, surfactant production starts, and 
once this happens, the RDS resolves within 4 - 5 days. How-
ever, at that time, if hypoxemia is severe, it can lead to multio-
rgan failure and death [28]. The surfactant, preferably natural, 
must be given to all newborns less than 24 weeks of gestational 
age requiring FIO2 > 0.3 or higher 24 weeks with FIO2 > 0.4 
[29].

Regular dosages are multiples of 100 mg/kg. Ideally (by 
clinical and pharmacokinetic) it is 200 mg/kg [30-32]. Options 
for replacement surfactant are beractant, calfactant, poractant, 
and lucinactant [33-36].

There are two preventive strategies. When a fetus must be 
delivery between 24 and 34 weeks, the mother was given two 
doses of betamethasone 12 mg IM 24 h apart or four doses of 
dexamethasone 6 mg IV or IM q 12 h at least 48 h before de-
livery. This induces fetal surfactant production and reduces the 
risk of RDS or decreases its severity [37].

Prophylactic intra-tracheal surfactant therapy giving to 
neonates that are at high risk of developing RDS (infant < 30 
weeks completed gestation especially in absence of antenatal 
corticosteroid exposure) has been shown to decrease risk of 
neonatal death and certain forms of pulmonary morbidity (e.g., 
pneumothorax) [38-44].

RDS can be anticipated prenatally using tests of fetal 
maturity, which are done on amniotic fluid obtained by am-
niocentesis or collected from the vagina (if membranes have 
ruptured).

Amniotic fluid tests include the lecithin/sphingomyelin ra-
tio, foam stability index test (the more surfactant in amniotic 
fluid, the greater stability of the foam that forms when the fluid 
is combined with ethanol and shaken), and surfactant/albumin 
ratio [10].

Risk of RDS is low when lecithin/sphingomyelin ratio is > 
2, phosphatidylglycerol is present, foam stability index is 47, 
or surfactant/albumin is > 55 mg/g.

Pulmonary alveolar proteinosis (PAP)

PAP is a rare disease [45, 46]. Of unknown etiology, it is char-
acterized by alveolar filling with granular eosinophilic mate-
rial that stains positive with periodic acid-Schiff (PAS) method 
and is derived from the phospholipids and the surfactant pro-
teins.

PAP is classified into two main categories: congenital (ne-
onatal) or acquired [47-51]. The mortality rate associated with 
conventional therapy is close to 100% [49].

Iatrogenic secondary lung damage can occur in the con-
genital form as a result of high levels of ventilatory support 
and high FIO2 [52, 53].

Acquired PAP is subdivided into an autoimmune form 
(previously termed idiopathic/primary) and secondary form 
(i.e., due to an underlying disease) [54]. Approximately 90% 
of patients with PAP have the autoimmune/idiopathic form of 
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PAP [55]. Secondary PAP is associated with various underly-
ing diseases [56-67]. This variant occurs without antibodies 
against GM-CSF.

Autoimmune PAP is characterized by the presence of such 
antibodies. GM-CSF is a key cytokine for the growth of granu-
locytes and monocytes. Neutralizing anti-GM-CSF antibody is 
an IgG type immunoglobulin [68, 69]. The antibody hinders 
signaling GM-CSF and its receptor, and this molecular process 
is vital for the macrophage to clarify the surfactant. This obsta-
cle occurs because the antibody sequesters GM-CSF, leaving 
without ligand the receptor, thereby inhibiting the late matura-
tion processes of the alveolar macrophages, limiting their abil-
ity to catabolize the surfactant, and causing their accumulation 
in the alveolar spaces [70-72].

Dyspnea is present in 39% of cases and cough, produc-
tive or not, at 21%. Chest pain, weight loss, fatigue and fever 
are frequently. Hemoptysis is rare. The physical examination is 
usually normal. Cyanosis and digital clubbing may be present 
in up to 30% of cases, and auscultation may reveal crackles 
[73].

The chest radiograph shows bilateral and symmetrical 
areas of airspace consolidation. The pattern resembles acute 
pulmonary edema [74]. With high-resolution CT (HRCT), the 
characteristic finding is the presence of ground-glass opacities 
associated with thickening of the interlobular septa, giving the 
“crazy paving” pattern [75-77].

In patients with autoimmune PAP, measurement of the 
autoantibody level against granulocyte-macrophage colony-
stimulating factor (GMAb) has been used to identify this dis-
ease. Uchida and colleagues were able to determine a serum 
level of 5 µg/mL as the optimal cutoff value for distinguishing 
autoimmune PAP from normal serum [78]. Other method is 
latex agglutination in serum. A concentration of > 19 µg/mL is 
specific to autoimmune PAP, and a concentration of < 10 µg/
mL has a good negative predictor value [79]. Previously, an 
open biopsy was considered the criterion to establish the di-
agnosis of PAP. However, transbronchial biopsies or cytologic 
evaluation of bronchoalveolar lavage (BAL) samples are now 
routinely used to diagnose this disease [80].

Since the widespread use of whole-lung lavage, 5-year 
survival period is 95% [73].

It is lung lavage with saline serum (1 L infusions of warm 
saline at 37 °C, each time for a total of 15 L). Wash one lung 
and 24 - 48 h after wash the other, using general anesthesia and 
selective intubation [81, 82].

The patient’s respiratory function improved due to the re-
moval of proteinaceous material and local anti-GM-CSF anti-
bodies [83, 84]. For patients with secondary PAP, in addition 
to whole-lung lavage, treatment of the underlying condition 
should be instituted.

The administration of exogenous GM-CSF or suppression 
of anti-GM-CSF antibodies has been used to treat those pa-
tients with autoimmune PAP [85-88].

Novel forms of therapy are currently being explored. 
These include plasmapheresis, which could be effective to re-
duce the concentration of anti-GM-CSF, and rituximab, which 
is a monoclonal antibody directed against the CD20 antigen 
on B lymphocytes and could attenuate PAP by reducing the 
concentration of anti-GM-CSF [89-95].

Lipoid pneumonia

The lipoid pneumonia is a specific form of lung inflammation 
that develops when lipids enter the bronchial tree. The gross 
appearance is a poorly defined area, pale yellow which has 
led to colloquial term, pneumonia “gold” [96, 97]. The lipid 
source may be exogenous or endogenous. In the exogenous, 
lipids enter the respiratory tract from the outside and can be 
acute or chronic. For example, nasal drops inhaled with an oil 
base in a long time, or accidental inhalation of cosmetic oil 
in a short time [98]. The mineral oil is used in children with 
partial small bowel obstruction by Ascaris lumbricoides [99]. 
It must be remembered that infants and children usually object 
in a vigorous way to ingesting oil, resulting in vomiting that 
precipitates aspiration [100].

Different substances called pyrofluids are used by the 
“fire-eaters” (performers who “spit fire”). The most common 
is the kerdan derived oil. After flame blowing, the “fire-eater” 
takes a deep breath, and can aspirate the kerdan remaining in 
the mouth. Pneumonia is acute, with symptoms appearing in 
the first 12 h after aspiration [101].

Other less common causes range from the use of an-
tiarrhythmic amiodarone, aspiration of milk, oil poppy seed 
and egg yolks until occupational exposure to inhaled paraffin 
droplets released by the machines in tableware cardboard fac-
tories and suicide attempt [102, 103].

Factors that increase the risk include extremes of age; 
anatomical and structural abnormalities of the nasopharynx 
and esophagus, psychiatric disorders; episodes of loss of con-
sciousness, and neuromuscular disorders, and digestive form 
of Chagas disease [104-107].

In endogenous lipids from the same patient’s body, for ex-
ample when an airway is obstructed, distal to the obstruction 
lipid-laden macrophages and giant cells fill the lumen of the 
excluded airspace [108].

Cough, dyspnea, usually fever and hemoptysis have also 
been reported, usually mild. It may be dullness to percussion, 
wheezing and crackles. The diagnosis lies in the history of ex-
posure to oil, compatible radiological finding and the presence 
of lipid-laden macrophages in sputum or BAL [109, 110].

The diagnostic performance of chest radiography in dis-
eases aspiration is low. Confluent consolidations and diffuse, 
ill-defined bilateral opacities, mass-like lesions, symmetrical 
and bilateral reticulo-nodular pattern, alveolar and interstitial 
mixed patterns, and unilateral or bilateral nodules have been 
described [111]. HRCT gives the best image for radiological 
diagnosis of the entity. The most common findings are airspace 
consolidation, ground-glass opacity, crazy paving pattern, in-
terlobular septal thickening, nodules, airspace and mass-like 
lesions. Consolidation is more common in children, and adult 
crazy paving pattern [112]. The most characteristic feature is 
the presence of consolidation with areas of fat attenuation, i.e., 
a negative value of attenuation. Negative densities values be-
tween -150 and -30 HU inside areas of consolidation are high-
ly suggestive of intrapulmonary fat and consistent with lipoid 
pneumonia [108].

With respect to treatment it is obvious that to identify and 
discontinue offending agent is essential, but sometimes the 
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oil is only a minor component of the commercial preparation 
[113, 114]. The use of corticosteroids to reduce the inflamma-
tory response is controversial, and is reserved for severe cases 
[115].

Repeated aspiration can cause severe fibrosis, and hypox-
ia can lead to cor pulmonale [116]. Hypercalcemia is another 
possible complication, probably by inflammatory cells produc-
ing calcitriol [117].

While acute and fatal cases are described, most have an 
indolent course. Scar fibrosis with volume loss can occur. By 
suspending exposure symptoms, radiological abnormalities 
improve within months, but expectoration of oil may continue 
for years [104, 115, 117].

Other disorders and significant associations

Sphingolipids are mediators of signals. Altered metabolism of 
these lipids in the alveolar compartment is related to increase 
in ceramides and hyperinflammation, for example, in acute 
lung injury, cystic fibrosis and COPD [118, 119]. Cigarette 
smoke is an oily surface to enter the cells and hijacks the sur-
factant to alveolar macrophages. In addition, tar snuff inacti-
vates the surfactant, decreasing its protective role and creating 
a toxic damage that perpetuates and promotes the development 
of COPD [120].

The accumulation of lipids in the lung worsens the gas 
exchange during microbial infections. The clearance of these 
lipids could improve lung function during these processes and 
could, therefore, be future therapeutic targets [121].

Endogenous lipoid pneumonia and non-specific interstitial 
pneumonitis have been predating the development of PAP in 
humans [122, 123].

In extrinsic allergic alveolitis, it has been postulated that 
inflammatory reactions in the lung can be influenced by the 
local environment of the lipid [124].

In the presence of liver non-alcoholic hepatic steatosis 
(NASH), it is related to lipid dysfunction and in fact is consid-
ered, by some authors, as part of the metabolic syndrome [125-
127]. In contrast, in lungs, the lipemia does not significantly 
impact the biology and biochemistry of lung lipids.

Pulmonary drug delivery lipid-mediated

The lungs are an attractive target for delivery of pharmacologi-
cally active ingredients (APIs) [128-131]. The most difficult 
aspect to develop a colloidal system for fogging is maintaining 
the critical physiochemical parameters for fogging to be suc-
cessful [132].

Particles greater than 5 µm are deposited in the orophar-
ynx and upper airways by impaction. Gravitational forces are 
predominantly responsible for the sedimentation deposited 
particles with a diameter of 1 - 5 µm, which happens in small 
airways and bronchioles way. Slow breathing provides suffi-
cient time for the sedimentation [133]. Particles smaller than 
0.5 µm are deposited in the deep alveolar regions but due to 
their small size many are exhaled [134]. Therefore, for drug 
delivery system for nanoparticles, sedimentation is the most 

attractive deposit method.
Mucociliary movement clears particles from trachea till 

the tertiary bronchi and ejecting them by coughing or swallow-
ing. In the alveolar region, the transport mechanism is more 
complex [135]. Actually there is a gap in knowledge regard-
ing the exact mechanisms of uptake, transport and clearance 
of particles in the alveolar epithelium and as APIs enter the 
systemic circulation [132].

There are several systems for pulmonary application based 
on nanoparticles. Solid lipid nanoparticles (SLNs) are aqueous 
suspensions nanoscale prepared mainly from phospholipids 
and triglycerides physiological tolerability [136]. Solid lipid 
microparticles (SLMs) have also been used for delivery of an-
tioxidants and anti-inflammatory drugs in asthma. Flavonoid 
quercetin can be delivered by SLM, like the antioxidant cur-
cumin by SLN, both for asthma [137, 138]. There have also 
been studies of SLN with sildenafil for pulmonary arterial hy-
pertension [135] with amikacin for lung infections [139] and 
doxorubicin for cancer [140].

Polymeric nanoparticles have gained rapid importance 
for pulmonary drug delivery. Proteins, genes, low molecular 
weight heparin, antineoplastic (paclitaxel), antioxidants to 
asthma and other inflammatory diseases of the airways have 
been studied with this system [132].

Liposomes are prepared primarily of phospholipids. They 
have a sustained release which maximizes the effect of the 
drug over an extended period of time. Surfactant, antibiotics 
(ciprofloxacin, amikacin, and amphotericin), and antioxidants 
(n-acetylcysteine, vitamin E, and glutathione) have been in-
vestigated in various models [141].

Blood-Endothelial Interactions

Endothelium

Pulmonary endothelium to perform its respiratory and non-
respiratory functions requires a large area. Calculated surface 
of 70 m2 is possibly underestimated due to the presence of pi-
nocytotic vesicles and glycocalyx that serve as a gateway to the 
receptors, the enzymatic domains, transport molecules on the 
endothelial surface and act as a matrix for surface reactions [4].

Leukocytes, respiratory gases, water, electrolytes, nutri-
ents and other molecules move endlessly in one direction or 
another, through the alveolar-capillary barrier. The pulmonary 
capillary endothelium is part of an elaborate mechanism to 
monitor systemic blood pressure.

Angiogenesis

This growth of new capillaries depends largely on the activity 
of endothelial cells.

In COPD, exposure to cigarette smoke and pollutants/
biomass fuels initiates an inflammatory response at different 
anatomical sites [142]. In this process, pulmonary vascular re-
modeling, activation of endothelial cells and angiogenesis are 
involved [143].
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In bronchial asthma, about 100 inflammatory mediators 
are released, which are growth factors and adhesion molecules 
[144, 145]. In addition, pro-inflammatory factors activated 
Th2 cytokines, apoptosis, necrosis, bronchial hyperreactivity 
and increased vascular permeability, angiogenesis and vascu-
lar remodeling [146].

There are a considerable number of patients over 50 years 
of age who have obstructive airway disease with features of a 
dual diagnosis of asthma and COPD [147]. The debate contin-
ues as to whether the COPD develops from asthma (Dutch hy-
pothesis) or if both entities are completely independent (Brit-
ish hypothesis) [148]. Recently, a joint effort between GOLD 
and GINA tried to characterize an overlap syndrome (ACOS), 
which has characteristics of both diseases [149]. If the Dutch 
hypothesis is true, remodeling and angiogenesis, together with 
fibroblast activation, are vital in the development of asthma to 
chronic obstruction irreversible airflow.

All nucleated cells in the body sense and respond to hy-
poxia. Under reduced oxygen availability, hypoxia-inducible 
factor 1 (HIF-1) regulates the expression of genes that mediate 
adaptive response [150-153]. HFI-1 was first identified in hu-
man cells as a regulator of erythropoietin, a vascular-endothe-
lial growth factor (VEGF) which stimulates angiogenesis and 
glycolytic enzymes [154].

Hypoxic pulmonary hypertension is a progressive and 
fatal complication of chronic lung disease. The pulmonary 
hypertension leads to right heart failure and progressive hy-
poxemia. The HIFs regulate target genes that play a role in the 
pathogenesis of pulmonary hypertension [155-157]. The alve-
olar hypoxia induces HIF-1 that activates the vascular smooth 
muscle cells leading to decreased expression of voltage-gated 
potassium channels, increased expression of transient calcium 
channels receptors-potential and increased expression of sodi-
um-hydrogen exchanger. The resulting changes in intracellular 
concentrations of potassium, calcium and hydrogen trigger hy-
pertrophy of smooth muscle cells, proliferation, depolarization 
and contraction, which leads to increased pulmonary vascular 
resistance. From a physiological point of view, the ultimate 
goal of treatment of chronic lung diseases is to improve alveo-
lar oxygenation and relieve the hypoxemia [1].

HIF-1 therefore mediates alterations in energy metabolism 
in smooth muscle cells and endothelial cells play an important 
pathogenic role in hypoxic pulmonary hypertension (World 
Health Organization (WHO) group III) and in idiopathic pul-
monary hypertension (WHO group I) [158-160].

Endogenous amines

Since 1925, when Starling and Verney showed that the lungs 
should be included in the circuit to continue defibrinated blood 
circulation through the isolated kidney, lungs are known to 
participate in the detoxification [161].

Histamine

The lung is rich in histamine. It originates from glucogenic 
amino acid histidine by histidine decarboxylase enzyme. Re-

ceptors are H1, H2, H3 and H4. It is degraded enzymatically 
by methylation or oxidative deamination [162].

It is released during immune reaction, particularly in type 
1 allergic reaction. At the respiratory level, it produces bron-
choconstriction that can be critical in asthmatic patients, in-
duces vasodilation of arterioles and precapillary sphincters, 
decreases peripheral resistance with reduced systolic and dias-
tolic blood pressure, and increases vascular permeability gen-
erating urticaria and laryngeal edema. It can also act in cardiac 
pacemaker, increasing heart rate and through the stimulation 
of H2 receptors stimulate the secretion of hydrochloric acid. 
In pregnant woman it results in uterine contraction and also in 
the gastrointestinal smooth muscle. At the level of the central 
nervous system it has a role as a neurotransmitter and neuro-
modulator. In anaphylactic shock, it is released into the lungs 
by degranulation of mast cells [163].

Serotonin (5-hydroxytryptamine (5-HT))

In the pulmonary circulation, there exists an effective system 
to remove 5-HT. The 5-HT, such as norepinephrine, is removed 
from the blood by a system-dependent sodium transport and a 
carrier [5].

Carcinoid tumor is a type of cancer that arises from the 
cells of the diffuse endocrine system and is mainly located in 
the gastrointestinal tract [164]. Carcinoid syndrome refers to 
a set of symptoms and signs that occur secondary to carcinoid 
tumor and include flushing, diarrhea, and, less commonly, 
heart failure and bronchospasm, mainly by the endogenous se-
cretion of serotonin and kallikrein [165]. The syndrome occurs 
in approximately 5% of carcinoid tumors and occurs when 
vasoactive substances (such as serotonin) from the tumor enter 
the systemic circulation and hepatic metabolism escape [166].

The significant association between serotonin and pulmo-
nary arterial hypertension (PAH) is of vigorous research. The 
serotonin transporter protein (SERT) and the serotonin recep-
tor are vital to understanding this association [167]. The ami-
norex and dexfenfluramine anorectic behave like SERTs and 
indirect serotonergic agonists and have been associated as a 
cause of PAH. Serotonin then acts on the 5-HT receptor (1B) 
mediating constriction and proliferation of smooth muscle 
cells of the artery pulmonary [168].

Agents capable of selectively blocking the proliferation of 
smooth muscle cells by SERT require investigation as poten-
tial treatments in human PAH [169, 170].

Vasoactive polypeptides

The lungs are involved in activation and inactivation of cir-
culating peptide release. Bradykinin is an inflammatory na-
nopeptide generated by proteolytic cleavage of its precursor 
kininogen by the enzyme kallikrein. It exerts its action through 
two receptors, B1 and B2 and is degraded by three kininases. 
It is a potent vasodilator resulting in a reduction in blood pres-
sure, also stimulates contraction of not vascular smooth muscle 
bronchus and intestine and is involved in the pain mechanism, 
cell growth and respiratory allergic reactions [171]. Brady-
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kinin also causes natriuresis, contributing to the drop in blood 
pressure [172].

Angiotensin I, a decapeptide, is produced by action of 
renin, an enzyme present in the juxtaglomerular apparatus of 
the kidney, on angiotensinogen. ACE separates turn dipeptide 
His-Leu to form the octapeptide angiotensin II, one of the most 
potent vasopressors known. ACE is located in the pulmonary 
capillary endothelial surface, so you have easy access to blood 
flow. It is obvious that the ACE is involved in the metabolism 
of the two peptides (angiotensin and bradykinin) [5].

Inhibiting ACE is a well consolidated hypertension treat-
ment by reducing the genesis of a vasoconstrictor peptide [173, 
174]. Increased levels of bradykinin are considered responsi-
ble for the dry cough that occurs in some patients using ACE 
inhibitors, to cause sensitization of afferent sensory nerves in 
the airways to increase the reflection [175, 176].

Angiotensin II has pro-inflammatory effects. It has been 
postulated that angiotensin II may contribute to the FEV1 de-
cline in persistent smokers [177]. ACE inhibitors might there-
fore reduce the FEV1 declining phenomenon. Patients with 
COPD show microalbuminuria, an indicator of systemic vas-
cular endothelial dysfunction. It is possible that ACE inhibitors 
could have an effect on endothelial dysfunction and on vascu-
lar and parenchymal destruction. The protective effect of ACE 
inhibition also appears to be grater in patients with associated 
cardiovascular disease, hypertension and diabetes [178].

Prostaglandins

They are a group of substances of lipid nature derived from 
fatty acids. They are synthesized from essential fatty acids by 
the action of cyclooxygenases, lipoxygenase, and cytochrome 
P-450. The most important precursor of PGs is arachidonic 
acid. The group of enzymes involved are known as PG-syn-
thetase.

As mentioned above, in bronchial asthma, approximately 
100 inflammatory mediators are released, within which they 
are lipid mediators [145].

The leukotriene receptor antagonists (LTRAs) are less ef-
fective than inhaled steroids in asthma (ICS). They can be used 
as controller initial therapy for patients who are unable to learn 
or use inhaled steroids, for patients experiencing intolerable 
side effects with ICS, or for patients with concomitant allergic 
rhinitis (step 2) (GINA) [179]. They can be added to low doses 
of steroids in step 3 as another option to regular moderate dos-
es of ICS plus SABA (as needed), but are less effective than 
adding an LABA (beta-2 agonists, long-acting); and in step 4 
they can be added as a third controller drug to regular medium 
doses of ICS more LABA. This alternative is valid in children 
and adults [180].

Since prostaglandins involved in inflammatory stimulat-
ing nerve endings of pain responses, non-steroidal anti-inflam-
matory drugs (NSAIDs) such as aspirin, work by inhibiting 
cyclooxygenase (COX) and thus, the production of prostaglan-
dins. In patients with the triad of asthma, nasal polyposis and 
aspirin intolerance, it is believed that inhibiting COX, the ara-
chidonic acid metabolism is biased toward the lipoxygenase 
pathway, generating more lipid mediators such as leukotrienes 

favoring bronchospasm.

Conclusions

External respiration is the primal and the most important func-
tion of the lungs but not the only one.

Specific alterations of passive and active non-respiratory 
functions generate functional or anatomical disorders that 
compromise breathing later.

In these disorders, lipid metabolism and blood-endotheli-
um interaction are prominently.

The basic scientific and clinical research of various dis-
eases generated by alterations of these functions can produce 
knowledge on the pathophysiology, biochemistry, genetics and 
immunology. These studies allow us to understand the mech-
anisms leading to dysfunction pharmacology to advance the 
design of therapeutic strategies that impact. This will result in 
better control of them and respiratory function.
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