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The Impact of Thiamine Treatment in the Diabetes Mellitus

Khanh vinh quoc Luonga, b, Lan Thi Hoang Nguyena

Abstract

Thiamine acts as a coenzyme for transketolase (Tk) and for the 
pyruvate dehydrogenase and α-ketoglutarate dehydrogenase com-
plexes, enzymes which play a fundamental role for intracellular 
glucose metabolism. The relationship between thiamine and dia-
betes mellitus (DM) has been reported in the literature. Thiamine 
levels and thiamine-dependent enzyme activities have been re-
duced in DM. Genetic studies provide opportunity to link the re-
lationship between thiamine and DM (such as Tk, SLC19A2 gene, 
transcription factor Sp1, α-1-antitrypsin, and p53). Thiamine and its 
derivatives have been demonstrated to prevent the activation of the 
biochemical pathways (increased flux through the polyol pathway, 
formation of advanced glycation end-products, activation of protein 
kinase C, and increased flux through the hexosamine biosynthesis 
pathway) induced by hyperglycemia in DM.Thiamine definitively 
has a role in the diabetic endothelial vascular diseases (micro and 
macroangiopathy), lipid profile, retinopathy, nephropathy, cardi-
opathy, and neuropathy.
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Introduction

Diabetes mellitus (DM) has emerged as a major health prob-
lem throughout the world. The prevalence of DM is increas-
ing rapidly in all age groups. The Diabetes Control and Com-
plication Trial (DCCT) and the United Kingdom Prospective 

Diabetes Study (UKPDS) have demonstrated that intensive 
treatment showed a delaying in the progression of long-term 
micro-vascular complications in DM. However, this treat-
ment contributed to a significant increase in severe hypogly-
cemia [1-2]. Chronic hyperglycemia has been known as a 
factor in the development of diabetic micro-vascular diseas-
es through increased formation of advanced glycosylation 
end product (AGE), activation of aldolase reductase (AR) 
and protein kinase C (PKC), and increased flux through the 
hexosamine pathway. Benfotiamine, a thiamine derivative, 
have been demonstrated in vitro to counteract the damag-
ing effects of hyperglycemia on cultured vascular cells [3]. 
Thiamine acts as a coenzyme for transketolase (Tk) and for 
the pyruvate dehydrogenase (PDH) and α-ketoglutarate de-
hydrogenase complexes, enzymes which play a fundamen-
tal role for intracellular glucose metabolism by increasing 
Krebs cycle activity. Therefore, we will review the role of 
thiamine in the diabetic subjects.

Relationship Between Thiamine and Diabetes 
Mellitus

Nutritional Factor

The relationship between thiamine and DM has been report-
ed in the literature. Significant proportion of healthy subjects 
(36-47%) was reported as a thiamine-deficient in a hypergly-
cemic state (such as on a diet high in carbohydrate, diabetes, 
and pregnancy) [4]. Low plasma thiamine level was noted in 
type 1 diabetic patients [5]. Thiamine reserve was found to 
be reduced in litters of untreated diabetic rats [6]. In children, 
acute thiamine deficiency can be manifested by diabetic ke-
toacidosis (DKA), lactic acidosis and hyperglycemia [7-8]. 
In another study, low blood thiamine level, erythrocyte Tk 
activity and high erythrocyte thiamine pyrophosphate (TPP) 
activity have been documented in diabetic patients [9-10]. Tk 
has been used to assess thiamine activity in mammalian tis-
sues. The low thiamine values in diabetic patients might be a 
reduced apo-enzyme level from the disease itself rather than 
thiamine deficiency [10]. In addition, plasma thiamine level 
has been shown to be decreased by 76% in type 1 and 75% in 
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type 2 diabetic patients, was associated with increased renal 
clearance and fractional excretion of thiamine [11]. Further-
more, thiamine transporter protein concentration has been 
shown to be increased in erythrocyte membranes of type 1 
and type 2 diabetic patients. Therefore, changes in thiamine 
levels may be masked by an increase in thiamine transporter 
expression.

Genetic Factor

Genetic studies provide an excellent opportunity to link mo-
lecular variations with epidemiological data. DNA sequenc-
es variations such as polymorphisms have modest and subtle 
biological effects. 

Thiamine-responsive megaloblastic anemia (TRMA) is 
a rare autosomal recessive condition, characterized by mega-
loblastic anemia, non-autoimmune DM, and sensory-neural 
loss [12-13]. TRMA fibroblasts displayed only 5-10% of thi-
amine uptake when compared with healthy individuals [14]. 
In TRMA, DM is heritable and mutation in the SLC19A2 
gene on chromosome 1q23.3, which encodes a high-affinity 
thiamine transport. The result is an abnormal thiamine trans-
portation and thiamine deficiency in the cells. The anemia 
is corrected with high doses of thiamine and recurred when 
thiamine is withdrawn. In addition, supplement of high dose 
of thiamine could improve in the clinical symptoms of the 
disease including a reduction or cessation in the need for 
exogenous insulin in these patients [15]. In versa, thiamine 
withdrawal can lead to DKA in TRMA patients [16]. How-
ever, mutations SLC19A2 do not contribute to type 2 DM in 
Pima Indians [17].

The expression of the genes encoding thiamine trans-
porters (THTR-1 and THTR-2) are regulated via Sp1 pro-
moter elements [18]. Transcription factor Sp1 mRNA was 
highly expressed in the epiretinal membrane of the prolif-
erative diabetic retinopathy [19]. Sp1 inhibitor suppressed 
transcription of these promoters and inhibited high-glucose-
induced mesangial cell proliferation in rat model [20]. Hex-
osamine pathway has been suggested to participate in the 
regulation of gene expression by high glucose concentration 
through Sp1 DNA binding sites in glomerular mesangial 
cells [21]. Resistin, an adipocyte-secreted hormone, antago-
nizes insulin [22]. Overexpression of the resistin gene (Retn) 
in adipose tissue was insulin-resistant in transgenic mice 
[23], whereas Retn (-/-) mice showed lower fasting blood 
glucose [24]. Osawa et al [25] found that G/G genotype of 
a resistin polymorphism was associated with type 2 diabetes 
mellitus by inducing promoter activity through specific bind-
ing of Sp1 and Sp3 transcription factors. 

The α-antitrypsin (ATT) polymorphism with a non-MM 
genotype has been shown to significantly increased incidence 
of thiamine deficiency [26]. ATT stimulates insulin secretion 
and protects β-cells against cytokine-induced apoptosis [27]. 
Culture of impure human islet fractions in the presence of 

ATT prevented insulin cleavage and improved islet recov-
ery [28]. In type 1 diabetic mouse model, intradermal human 
ATT prevents and reverse diabetic disease [29].

Adult bone marrow (BM)-derived insulin-producing 
cells (IPC) are capable to regulate blood glucose in diabetic 
mice. Oh et al. [30] demonstrated the presence of Tk in BM-
derived IPCs under high-glucose conditions. Aberrant Tk has 
been reported to participate in glucose metabolism in malig-
nant pleural effusion cells [31]. Tk variants and reduced ac-
tivities of Tk enzyme were found in diabetic patients [32-33]. 
Genetic variability in Tk and Tk-like might contribute to the 
progression of diabetic nephropathy and mortality [34]. A 
subnormal erythrocyte Tk activity has been identified in dia-
betic patients [35]. Thiamine regulates the expression genes 
that code for enzymes using thiamine as cofactor. Thiamine 
deficiency diminishes the mRNA levels of Tk and PDH [36]. 
PDH activity is reduced in diabetic patients [37-38].

There are numerous potential gene products that are 
transcriptionally activated by p53 and are involved in cell 
cycle arrest or apoptosis [39]. Tumor suppressor p53 has 
been identified as a mediator of podocyte (glomerular epi-
thelial cells) apoptosis in cells exposed to high glucose 
[40]. Glomeruli isolated from these mice showed decreased 
phosphorylation of AMP-activated protein kinase and en-
hanced expression of p53. High glucose-induced repres-
sion of insulin-like growth factor 1 receptor (IGF-1R) is 
mediated by the association of p53 with the IGF-1R pro-
moter [41]. Local p53 silencing resulted in faster wound 
healing in diabetic wounds [42]. The treated group demon-
strated improved wound architecture while demonstrating 
near-complete local p53 knockdown. Morimoto et al [43] 
suggested that p53 accumulation may be responsible for 
impaired wound healing in diabetes. Atovastatin was found 
to restore ischemic limb loss in diabetes by augmenting p53 
degradation. The p53 codon 72 polymorphism has been re-
ported in type 1 DM [44]. Increased thiamine transporter 
activities were found in cells over-expressing mTHTR-1 
and under conditions of DNA damage or p53 activation 
[45]. Thiamine diphosphate (TDP) has been shown to in-
hibit p53 binding and thiamine has been shown to inhibit 
intracellular p53 activity [46]. The expression of p53 was 
decreased significantly in cultured retina neurons of dia-
betic rats treated with thiamine [47].

Thiamine and Biochemical Consequences of 
Hyperglycemia
  
There are four distinct biochemical pathways, which have 
been identified as mechanisms by which intracellular hy-
perglycemia can induce vascular damage and contribute to 
the pathogenesis of diabetic complications: increased flux 
through the polyol pathway, formation of AGE, activation of 
PKC, and increased flux through the hexosamine biosynthe-
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sis pathway (HBP).
Thiamine and benfotiamine reduces AR mRNA expres-

sion, activity, sorbitol concentrations, and intracellular glu-
cose while increasing the expression and activity of Tk in 
human endothelial cells and bovine retinal pericytes cultured 
in high glucose [48]. AR is a key enzyme in the polyol path-
way, which transforms D-glucose into D-sorbitol.

In experimental diabetes, thiamine and benfotiamine 
(a synthetic S-acyl derivative of thiamine) supplement pre-
vented tissue accumulation and increased urinary excretion 
of protein glycation, oxidation and nitration adducts [49]. 
Karachalias et al [50] reported that hydroimidazolone AGE 
residues derived from glyoxal and methylglyoxal, G-H1 and 
MG-H1, were increased 115% and 68% in the streptozoto-
cin-induced (STZ) diabetic rats, and were normalized by 
both thiamine and benfotiamine; whereas N-carboxymethyl-
lysine (CML) and N-carboxyethyl-lysine (CEL) residues 
were increased 74% and 118% in diabetic-induced rats and 
were normalized by thiamine only.

High glucose has been reported to increase diacylglyc-
erol mass and activates PKC in mesangial cell cultures [51]. 
High dose of thiamine and benfotiamine increased Tk ex-
pression in renal glomeruli and associated with decreased 
activation of PKC and also decreased protein glycation and 
oxidative stress [52].

O-glycosylation of protein induced by HBP activation 
has been reported to modify collagen expression and con-
tribute to the diabetic cardiomyopathy [53-54]. Thiamine 
replacement decreased O-glycosylation of protein and pre-
vented diabetes-induced cardiac fibrosis in experimental dia-
betes [55].

Role of Thiamine in the Diabetes Mellitus
  
Blood Glucose and Insulin Secretion

When rats were maintained on a thiamine-deficient diet, ce-
rebral glucose utilization (CGU) decreased as the concentra-
tion of cerebral thiamine diminished [56]. The addition of 
thiamine reversed changes in the CGU resulting from thia-
mine deprivation [57]. High fiber diets have been reported 
to decrease postprandial glycemia in diabetic patients [58]. 
Thiamine is present in high amounts in fiber-containing 
foods [59]. In women, the effect of thiamine intake appeared 
to have a strong and revelant association with glucose tol-
erance [60]. In a randomized controlled trial, thiamine has 
showed to decrease blood glucose and leptin concentration 
in 24 drug-naїve patients with diabetes type 2 in one month 
[61]. Glycosylated hemoglobin significantly decreased with 
benfotiamine treatment in 45 days [62].

The pancreas contains high levels of thiamine [63]. In 
pancreas, thiamine uptake is carrier mediated and is adap-
tively regulated by the prevailing vitamin level via tran-

scriptional mechanisms [64]. Thiamine deficiency leads to 
a marked impairment in insulin synthesis and secretion [65-
66]. Rats with thiamine-deficient diet caused the reduction of 
serum insulin by 14%, and also decreased trans-membrane 
glucose transport [66]. Benfotiamine activates glucose me-
tabolism and insulin synthesis to prevent glucose toxicity 
caused by hyperglycemia in DM [30]. This vitamin B also 
appeared to maximize the BM-derived IPCs ability to syn-
thesize insulin [30].

Endothelial Dysfunction

Dysfunction of endothelial cells has been known to play a 
major role in both micro- and macrovascular complications 
of DM. Thiamine reversed hyperglycemia-induced dysfunc-
tion in cultured endothelial cells [67]. Thiamine and benfo-
tiamine have been demonstrated in vitro to counteract the 
damaging effects of hyperglycemia on cultured vascular cells 
[68]. In addition, thiamine has been reported to improve en-
dothelia vasodilatation in patients with hyperglycemia [69]. 
Daily intake of thiamine was positively correlated with the 
circulating level of endothelial progenitor cells and vascular 
endothelial function in type 2 diabetic patients [70].

Cardiovascular Disease

The most common cause of morbidity and mortality 
among diabetic patient is atherosclerotic cardiovascular 
disease. In diabetic-induced mice with unilateral limb 
ischemia, benfotiamine prevented ischemia-induced toe 
necrosis, improved hindlimb perfusion and oxygenation, 
and restored endothelium-dependent vasodilation. His-
tological studies revealed the improvement of reparative 
neovascularization and inhibition of endothelial and skel-
etal muscle cells apoptosis [71].

Diabetic cardiomyopathy can progress toward overt 
heart failure with increased mortality. Benfotiamine im-
proved functional recovery of the infarcted heart with pro-
longed survival and reduced cardiomyocyte apoptosis in 
diabetic mice [72]. High dose of thiamine rescues cardio-
myocyte contractile dysfunction and it also prevented dia-
stolic dysfunction, heart failure and cardiac fibrosis in diabe-
tes-induced mice models [73-74, 54].

Lipid Profiles

Cardiovascular disease in diabetes is linked to increased 
risk of atherosclerosis, increased levels of triglyceride-rich 
lipoproteins and enhances hepatic lipogenesis. High dose of 
thiamine therapy (70 mg/kg) prevented increased in plasma 
cholesterol and triglycerides in diabetes-induced rats but it 
did not reverse decrease of HDL [75]. However, a lower dose 
of thiamine (7 mg/kg) and the benfotiamine were ineffective 
in preventing these lipid profiles [76].
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Nephropathy

Nephropathy is a common complication of diabetes. It is 
characterized by the development of proteinuria and end-
stage renal disease (ESRD). In diabetic rat model, high-dose 
of thiamine and benfotiamine strongly inhibited the devel-
opment of micro-albuminuria and associated with decreased 
activation of PKC, protein glycation, and oxidative stress 
[59]. This was achieved without change in elevated plasma 
glucose concentration and glycated hemoglobin. In type 2 
diabetic nephropathy, a high dose of benfotiamine (900 mg/
day) treatment did not reduce the urinary albumin excretion 
(UAE) and the tubular damage marker kidney injury mol-
ecule-1 (KIM-1) after 12 weeks [77]; this study may have 
been too short to see the effect of benfotiamine. This vitamin 
prevented oxidative stress induced by the mutagen 4-nitro-
quinoline-1-oxide (NQO), the uremic toxin indoxyl sulfate, 
and the peptide hormone angiotensin II in three different 
kidney cell lines [78]. In a double-blind placebo-controlled 
study, urinary albumin excretion was decreased in type 2 
diabetic patients with micro-albuminuria after receiving 
high-dose of thiamine for 3 months [79]. In another study 
with high dose of thiamine, the level of urinary albumin de-
creased by 34% in the type 2diabetic patients [80].

Neuropathy

Diabetes polyneuropathy is one of the most common dia-
betic complications. Benfotiamine has shown to effect in the 
diabetic neuropathy patients with reduction in pain score and 
improving neurophysiological parameters [47]. Benfothia-
mine significantly reduced inflammatory (10 - 300 mg/kg) 
and neuropathic (75 - 300 mg/kg) nociception in non-dia-
betic and diabetic rats [81]. In a double blind, placebo-con-
trolled, phase-III clinical study with benfotiamine in diabetic 
polyneuropathy, the improvement of neuropathy symptom 
score was more pronounced at the higher benfotiamine dose 
(600 mg vs. 300 mg) and increased with treatment duration 
[82].

High-dose thiamine treatment may be beneficial in de-
laying the progression of diabetic cystopathy in the experi-
mental animal model [82].

Retinopathies

Diabetic retinopathy is one of the most serious complica-
tions in diabetic patients and a leading cause of blindness. 
Polyol pathway hyperactivity has been implicated in the 
pathogenesis of diabetic retinopathy [83-85]. Tk has been 
demonstrated to be a structural protein in cornea, being im-
portant for eye transparency [86]. Tk is also known as an 
important role in preventing hyperglycemia-induced vascu-
lar damage [53]. Thiamine and benfotiamine were reported 
to regulate the intracellular glucose and polyol pathway in 

bovine retinal pericytes cultured in high glucose [53]. Early 
and selective loss of pericytes and thickening of the base-
ment membrane are hallmarks of diabetic retinopathy. Thia-
mine and benfotiamine prevent apoptosis induced by high 
glucose-conditioned extracellular matrix in human and bo-
vine retinal pericytes (HRP and BRP) [77-87]. These vita-
mins B correct the increase in matrix metalloproteinase 2 
(MMP-2) activity due to high glucose in HRP, while increas-
ing their tissue inhibitors (TIMP-1) [87]. In retinas of dia-
betic animals, benfotiamine treatment inhibited these three 
pathways and NF-kappaB activation by activating Tk, and 
also prevented experimental diabetic retinopathy [3].

Cancer

Epidemiological data have suggested an increased cancer 
rates in diabetic patients [88]. Diabetes or hyperglycemia 
causes DNA damage by oxidation to bases and the sugar-
phosphates has been demonstrated recently [89-91]. High 
level of glucose also reported to increase mutagenesis in hu-
man lymphoblastoid cells [92]. However, benfotiamine sig-
nificantly lowered the genomic damage in peripheral lym-
phocytes of hemodialysis patients [93]. It also exhibits direct 
anti-oxidative capacity and prevents induction of DNA dam-
age in vitro [77].

Conclusion
  
The relationship between thiamine and diabetes mellitus was 
discussed. Thiamine definitively has a role in the diabetic 
endothelial vascular diseases (micro and macroangiopathy), 
lipid profile, retinopathy, nephropathy, cardiopathy, and neu-
ropathy.
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